This paper presents a minimum delay congestion control in differentiated Service communication networks. The premium and ordinary passage services based fluid flow theory is used to build the suggested structure in high efficient manage. The established system is capable to adeptly manage both the physical network resource limitations and indefinite time delay related to networking system structure.
The great importance of training made it as an investment for the organization, and assert the Quality of performance which support it by prepare the employee to the Current and future Jobs . The Research problem a rounded about How to measure the impact of training based on (ISO 10015) and its effect on the Quality of performance , How to evaluation the results of training to attained the training goals . The Research aims to find out the effects of application of international standard guidelines (ISO 10015) to attained the quality of audit work achieved in the Federal Board of Supreme Audit. The Research sought to achieve a number of objectives cognitive and applied on the basis of four key assumptions, and other su
... Show MoreA novel design and implementation of a cognitive methodology for the on-line auto-tuning robust PID controller in a real heating system is presented in this paper. The aim of the proposed work is to construct a cognitive control methodology that gives optimal control signal to the heating system, which achieve the following objectives: fast and precise search efficiency in finding the on- line optimal PID controller parameters in order to find the optimal output temperature response for the heating system. The cognitive methodology (CM) consists of three engines: breeding engine based Routh-Hurwitz criterion stability, search engine based particle
swarm optimization (PSO) and aggregation knowledge engine based cultural algorithm (CA)
In this paper, a Modified Weighted Low Energy Adaptive Clustering Hierarchy (MW-LEACH) protocol is implemented to improve the Quality of Service (QoS) in Wireless Sensor Network (WSN) with mobile sink node. The Quality of Service is measured in terms of Throughput Ratio (TR), Packet Loss Ratio (PLR) and Energy Consumption (EC). The protocol is implemented based on Python simulation. Simulation Results showed that the proposed protocol provides better Quality of Service in comparison with Weighted Low Energy Cluster Hierarchy (W-LEACH) protocol by 63%.
In the modern world, wind turbine (WT) has become the largest source of renewable energy. The horizontal-axis wind turbine (HAWT) has higher efficiency than the vertical-axis wind turbine (VAWT). The blade pitch angle (BPA) of WT is controlled to increase output power generation over the rated wind speed. This paper proposes an accurate controller for BPA in a 500-kw HAWT. Three types of controllers have been applied and compared to find the best controller: PID controller (PIDC), fuzzy logic type-2 controller (T2FLC), and hybrid type-2 fuzzy-PID controller (T2FPIDC). This paper has been used Mamdani and Sugeno fuzzy inference systems (FIS) to find the best inference system for WT controllers. Furthermore, genetic algorithm (GA) and particl
... Show MoreThe blade pitch angle (BPA) in wind turbine (WT) is controlled to maximize output power generation above the rated wind speed (WS). In this paper, four types of controllers are suggested and compared for BPA controller in WT: PID controller (PIDC), type-1 fuzzy logic controller (T1-FLC), type-2 fuzzy logic controller (T2-FLC), and hybrid fuzzy-PID controller (FPIDC). The Mamdani and Sugeno fuzzy inference systems (FIS) have been compared to find the best inference system used in FLC. Genetic algorithm (GA) and Particle swarm optimization algorithm (PSO) are used to find the optimal tuning of the PID parameter. The results of500-kw horizontal-axis wind turbine show that PIDC based on PSO can reduced 2.81% in summation error of power
... Show MoreZiegler and Nichols proposed the well-known Ziegler-Nichols method to tune the coefficients of PID controller. This tuning method is simple and gives fixed values for the coefficients which make PID controller have weak adaptabilities for the model parameters variation and changing in operating conditions. In order to achieve adaptive controller, the Neural Network (NN) self-tuning PID control is proposed in this paper which combines conventional PID controller and Neural Network learning capabilities. The proportional, integral and derivative (KP, KI, KD) gains are self tuned on-line by the NN output which is obtained due to the error value on the desired output of the system under control. The conventio
... Show MoreA particle swarm optimization algorithm and neural network like self-tuning PID controller for CSTR system is presented. The scheme of the discrete-time PID control structure is based on neural network and tuned the parameters of the PID controller by using a particle swarm optimization PSO technique as a simple and fast training algorithm. The proposed method has advantage that it is not necessary to use a combined structure of identification and decision because it used PSO. Simulation results show the effectiveness of the proposed adaptive PID neural control algorithm in terms of minimum tracking error and smoothness control signal obtained for non-linear dynamical CSTR system.
The historical center's landscape suffers from neglect, despite their importance and broad capabilities in enhancing the cultural value of the historical center, as landscape includes many heterogeneous human and non-human components, material and immaterial, natural and manufactured, also different historical layers, ancient, modern and contemporary. Due to the difference in these components and layers, it has become difficult for the designer to deal with it. Therefore, the research was directed by following a methodology of actor-network theory as it deals with such a complex system and concerned with an advanced method to connect the various components of considering landscape as a ground that can include various elements and deal wi
... Show MoreIn this paper, precision agriculture system is introduced based on Wireless Sensor Network (WSN). Soil moisture considered one of environment factors that effect on crop. The period of irrigation must be monitored. Neural network capable of learning the behavior of the agricultural soil in absence of mathematical model. This paper introduced modified type of neural network that is known as Spiking Neural Network (SNN). In this work, the precision agriculture system is modeled, contains two SNNs which have been identified off-line based on logged data, one of these SNNs represents the monitor that located at sink where the period of irrigation is calculated and the other represents the soil. In addition, to reduce p
... Show More