Thin films of tin sulfide (SnS) were prepared by thermal evaporation technique on glass substrates, with thickness in the range of 100, 200 and 300nm and their physical properties were studied with appropriate techniques. The phase of the synthesized thin films was confirmed by X-ray diffraction analysis. Further, the crystallite size was calculated by Scherer formula and found to increase from 58 to 79 nm with increase of thickness. The obtained results were discussed in view of testing the suitability of SnS film as an absorber for the fabrication of low-cost and non toxic solar cell. For thickness, t=300nm, the films showed orthorhombic OR phase with a strong (111) preferred orientation. The films deposited with thickness < 200nm deviated from stoichiometry and additional phases such as Sn2S3 was found to be present. Optical transmission spectra we rerecorded in the wavelength range 200-1100 nm, and the data was used to calculate absorption coefficient and optical band gap. SnS film grown with 300nm has shown a direct optical band gap of ~1.7 eV, with an absorption coefficient of 105cm-1 above the fundamental absorption edge. These polycrystalline and highly absorbing SnS thin films are suitable for the fabrication of hetero junction solar cells.
The electronic properties (such as energy gap HOMO levels. LUMO levels, density of state and density of bonds in addition to spectroscopic properties like IR spectra, Raman spectra, force constant and reduced masses as a function of frequency) of coronene C24 and reduced graphene oxide C24OX , where x=1-5, were studied.. The methodology employed was Density Functional Theory (DFT) with Hybrid function B3LYP and 6-311G** basis sets. The energy gap was calculated for C24 to be 3.5 eV and for C24Ox was from 0.89 to 1.6862 eV for x=1-5 ,respectively. These energy gaps values are comparable to the measured gap of Graphene (1-2.2 eV). The spectroscopic properties were compared with experimental measurements, specificall
... Show MoreFriction stir welding (FSW) process is an emerging solid state joining process in which the material that is being welded does not melt. This process uses a nonconsumable tool to generate frictional heat in the abutting surfaces. The welding parameters such as tool rotational speed, welding speed, axial force, etc., and tool pin profile play a major role in deciding the weld quality. In this investigation an attempt
has been made to understand the effect of tool pin profile and rotation diameter on microstructure and mechanical properties in aluminum alloy (2218-T72). Five different tool pin profiles (straight cylindrical, threaded cylindrical, triangular, square, and threaded cylindrical with flat), with three different rotation
d
The accumulation of construction and demolition waste is one of the major problems in modern construction. Hence, this research investigates the use of waste brick in concrete. Seven different concrete mixes were investigated in this study: a control concrete mix, three mixes with volumetric replacement (10, 20, and 30)% of natural aggregate with brick aggregate, and two mixes with the addition of nano brick powder at a percentage level of 5– 10% by weight of cementitious materials. And the last one was mixed with 10% nano brick and 10% coarse brick aggregate. The experimental results for the additive of nano brick powder showed an enhancement in mechanical properties (compressive,
Background Microorganisms and fungal growth especially Candida albicans, on soft denture lining material are the most common problem which can lead to chronic mucosal inflammation. The aim of this study was to evaluate the effect of zirconium nanoparticles into acrylic-based heat cured soft denture lining material against Candida albicans, and the amount of zirconium ion release of soft liner/ZrNPs composite. Furthermore, evaluate shear bond strength after ZrNPs addition to soft liner. Materials and methods: Zirconium nanoparticles were added into acrylic-based soft denture liner in various percentages (1%, and 1.5% by weight). Two hundred and fifty specimens were arranged and isolated into four groups as per the test to be done The antifu
... Show MoreThis work is concerned with the vibration attenuation of a smart beam interacting with fluid using proportional-derivative PD control and adaptive approximation compensator AAC. The role of the AAC is to improve the PD performance by compensating for unmodelled dynamics using the concept of function approximation technique FAT. The key idea is to represent the unknown parameters using the weighting coefficient and basis function matrices/vectors. The weighting coefficient vector is updated using Lyapunov theory. This controller is applied to a flexible beam provided with surface bonded piezo-patches while the vibrating beam system is submerged in a fluid. Two main effects are considered: 1) axial stretching of the vibrating beam that leads
... Show MoreThis research studies the effect of adding five different percentages of polymer (2, 4, 6, 8, and 10% of cement weight) on cement mortar's fresh and hardened properties, which was cured at laboratory temperature for 7, 14, and 28 days. Workability increases with increasing polymer. The workability value was lowest (25.6 and 29.4) % in mixtures containing 2% and 4% of (SBR). Increasing polymer ratios significantly decreased mechanical properties (compressive and flexural strength). Therefore, the best results were at 2% SBR and 4% SBR at 28 days of age. An inverse relationship was recorded between the increase in SBR ratios and polymer-modified cement mortar's compressive and flexural strength values. In general, the high
... Show MoreTitanium alloy surface properties have an essential role in the interaction of dental implants with bone, and alteration of the surface of the implant could improve osseointegration. This study was designed to investigate the effect of different heat treatment temperatures on titanium alloy surface properties for dental implants. The effect of different temperatures of heat treatment (750°C, 850°C, 950°C and 1050°C) were investigated on the surface topography, surface chemistry, titanium oxide layer thickness, blood contact angle, & blood drop diameter of titanium alloy. The disks were prepared from titanium alloy (Ti-6Al-4V) and the samples were divided into five groups depending on the different temperatures of heat treatment. The hea
... Show MoreDate palm fiber is one of the common wastes available in the M. E. countries essentially Iraq. The aim of search to investigate the performance and effects of fiber date palm on the mechanical properties of high strength concrete, this fiber was used in three ratio 2, 4 and 6 % by vol. of concrete at ages of (7, 28, 90) days. Results demonstrated improvement in the compressive strength increased 19.2 %, 23.6%, 24.9 % for 2%, 4%, 6% of fiber respectively at age 28 days. Flexural strength increases 47.6%, 66.2%, 93.8% form (2,4,6) % of fiber respectively at age 28 days. Density increase about 0.41%, 0, 61 % 0.69 % for (2,4,6) % of fiber respectively at age 28. Absorption water decrease
The petrophysical characteristics of five wells drilled into the Sa'di Formation in the Halfaya oil field were evaluated using IP software to determine a reservoir and explore hydrocarbon reserve zones. The lithology was evaluated using the M-N cross-plot method. The diagram showed that the Sa'di Formation was mainly composed of calcite (represented by the limestone region) is the main mineral in the Sa′di Reservoir. Using a density-neutron cross plot to identify the lithology showed that the formation mainly consists of limestone with minor shale. Gamma-ray logs were employed to calculate the shale quantity in each well. The porosity at weak hole intervals was calculated using a sonic log and neutron-density log at the reservoir
... Show MoreBackground: zirconium (Zr) implants are known for having an aesthetically pleasing tooth-like colour Unlike the grey cervical collar that develops over time when titanium (Ti) implants are used in thin gingival biotypes. However, the surface qualities of Zr implants can be further improved. This present study examined using thermal vapour deposition (TVD) to coat Zr implants with germanium (Ge) to improve its physical and chemical characteristics and enhance soft and hard tissue responses. Materials and methods: Zr discs were divided into two groups; the uncoated (control) group was only grit-blasted with alumina particles while the coated (experimental) group was grit-blasted then coated with Ge via TVD. Field emission scanning ele
... Show More