Preferred Language
Articles
/
nxb7BIcBVTCNdQwCLS1P
3D Object Recognition Using Fast Overlapped Block Processing Technique
...Show More Authors

Three-dimensional (3D) image and medical image processing, which are considered big data analysis, have attracted significant attention during the last few years. To this end, efficient 3D object recognition techniques could be beneficial to such image and medical image processing. However, to date, most of the proposed methods for 3D object recognition experience major challenges in terms of high computational complexity. This is attributed to the fact that the computational complexity and execution time are increased when the dimensions of the object are increased, which is the case in 3D object recognition. Therefore, finding an efficient method for obtaining high recognition accuracy with low computational complexity is essential. To this end, this paper presents an efficient method for 3D object recognition with low computational complexity. Specifically, the proposed method uses a fast overlapped technique, which deals with higher-order polynomials and high-dimensional objects. The fast overlapped block-processing algorithm reduces the computational complexity of feature extraction. This paper also exploits Charlier polynomials and their moments along with support vector machine (SVM). The evaluation of the presented method is carried out using a well-known dataset, the McGill benchmark dataset. Besides, comparisons are performed with existing 3D object recognition methods. The results show that the proposed 3D object recognition approach achieves high recognition rates under different noisy environments. Furthermore, the results show that the presented method has the potential to mitigate noise distortion and outperforms existing methods in terms of computation time under noise-free and different noisy environments.

Scopus Clarivate Crossref
View Publication
Publication Date
Tue Mar 21 2023
Journal Name
International Journal Of Interactive Mobile Technologies (ijim)
Study the Effect of Using Google Classroom on the Academic Performance Under the Covid19 Pandemic Using Data Mining Technique
...Show More Authors

— In light of the pandemic that has swept the world, the use of e-learning in educational institutions has become an urgent necessity for continued knowledge communication with students. Educational institutions can benefit from the free tools that Google provide and from these applications, Google classroom which is characterized by ease of use, but the efficiency of using Google classroom is affected by several variables not studied in previous studies Clearly, this study aimed to identify the use of Google classroom as a system for managing e-learning and the factors affecting the performance of students and lecturer. The data of this study were collected from 219 members of the faculty and students at the College of Administra

... Show More
View Publication
Scopus Crossref
Publication Date
Mon Jan 01 2018
Journal Name
Opcion
Fast-slow thinking and its relationship to cognitive failure At university students
...Show More Authors

Scopus
Publication Date
Wed Mar 16 2022
Journal Name
2022 Muthanna International Conference On Engineering Science And Technology (micest)
Fast Synthesis and Characterization of Nano-SSZ-13 Zeolite by Hydrothermal Method
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Tue Aug 31 2021
Journal Name
International Journal Of Intelligent Engineering And Systems
FDPHI: Fast Deep Packet Header Inspection for Data Traffic Classification and Management
...Show More Authors

Traffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational c

... Show More
View Publication
Scopus (9)
Crossref (8)
Scopus Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Ieee Access
Fast Shot Boundary Detection Based on Separable Moments and Support Vector Machine
...Show More Authors

View Publication
Scopus (27)
Crossref (25)
Scopus Clarivate Crossref
Publication Date
Fri Sep 01 2023
Journal Name
Iraqi Journal Of Physics
Photometry Technique to Map Elements’ Distribution on Comets’ Nuclei Surfaces Using a New Method
...Show More Authors

This study is unique in this field. It represents a mix of three branches of technology: photometry, spectroscopy, and image processing. The work treats the image by treating each pixel in the image based on its color, where the color means a specific wavelength on the RGB line; therefore, any image will have many wavelengths from all its pixels. The results of the study are specific and identify the elements on the nucleus’s surface of a comet, not only the details but also their mapping on the nucleus. The work considered 12 elements in two comets (Temple 1 and 67P/Churyumoy-Gerasimenko). The elements have strong emission lines in the visible range, which were recognized by our MATLAB program in the treatment of the image. The percen

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Apr 19 2017
Journal Name
Iraqi Dental Journal
Matching the Iris Color of Ocular Prosthesis Using an Eye Contact Lens: New Technique
...Show More Authors

View Publication
Crossref
Publication Date
Fri Jun 01 2018
Journal Name
International Journal Of Civil Engineering And Technology (ijciet)
Performance assessment of biological treatment of sequencing batch reactor using artificial neural network technique.
...Show More Authors

Artificial Neural Network (ANN) model's application is widely increased for wastewater treatment plant (WWTP) variables prediction and forecasting which can enable the operators to take appropriate action and maintaining the norms. It is much easier modeling tool for dealing with complex nature WWTP modeling comparing with other traditional mathematical models. ANN technique significance has been considered at present study for the prediction of sequencing batch reactor (SBR) performance based on effluent's (BOD5/COD) ratio after collecting the required historical daily SBR data for two years operation (2015-2016) from Baghdad Mayoralty and Al-Rustamiya WWTP office, Iraq. The prediction was gotten by the application of a feed-forwa

... Show More
Publication Date
Sat May 09 2015
Journal Name
International Journal Of Innovations In Scientific Engineering
USING ARTIFICIAL NEURAL NETWORK TECHNIQUE FOR THE ESTIMATION OF CD CONCENTRATION IN CONTAMINATED SOILS
...Show More Authors

The aim of this paper is to design artificial neural network as an alternative accurate tool to estimate concentration of Cadmium in contaminated soils for any depth and time. First, fifty soil samples were harvested from a phytoremediated contaminated site located in Qanat Aljaeesh in Baghdad city in Iraq. Second, a series of measurements were performed on the soil samples. The inputs are the soil depth, the time, and the soil parameters but the output is the concentration of Cu in the soil for depth x and time t. Third, design an ANN and its performance was evaluated using a test data set and then applied to estimate the concentration of Cadmium. The performance of the ANN technique was compared with the traditional laboratory inspecting

... Show More
View Publication
Publication Date
Mon Oct 01 2018
Journal Name
Iraqi Journal Of Science
Theoretical Study of The Electromagnetic Structure of Boron Isotopes Using Local Scale Transformation Technique
...Show More Authors

View Publication
Scopus (8)
Crossref (1)
Scopus Crossref