Three-dimensional (3D) image and medical image processing, which are considered big data analysis, have attracted significant attention during the last few years. To this end, efficient 3D object recognition techniques could be beneficial to such image and medical image processing. However, to date, most of the proposed methods for 3D object recognition experience major challenges in terms of high computational complexity. This is attributed to the fact that the computational complexity and execution time are increased when the dimensions of the object are increased, which is the case in 3D object recognition. Therefore, finding an efficient method for obtaining high recognition accuracy with low computational complexity is essential. To this end, this paper presents an efficient method for 3D object recognition with low computational complexity. Specifically, the proposed method uses a fast overlapped technique, which deals with higher-order polynomials and high-dimensional objects. The fast overlapped block-processing algorithm reduces the computational complexity of feature extraction. This paper also exploits Charlier polynomials and their moments along with support vector machine (SVM). The evaluation of the presented method is carried out using a well-known dataset, the McGill benchmark dataset. Besides, comparisons are performed with existing 3D object recognition methods. The results show that the proposed 3D object recognition approach achieves high recognition rates under different noisy environments. Furthermore, the results show that the presented method has the potential to mitigate noise distortion and outperforms existing methods in terms of computation time under noise-free and different noisy environments.
The Cu(II) was found using a quick and uncomplicated procedure that involved reacting it with a freshly synthesized ligand to create an orange complex that had an absorbance peak of 481.5 nm in an acidic solution. The best conditions for the formation of the complex were studied from the concentration of the ligand, medium, the eff ect of the addition sequence, the eff ect of temperature, and the time of complex formation. The results obtained are scatter plot extending from 0.1–9 ppm and a linear range from 0.1–7 ppm. Relative standard deviation (RSD%) for n = 8 is less than 0.5, recovery % (R%) within acceptable values, correlation coeffi cient (r) equal 0.9986, coeffi cient of determination (r2) equal to 0.9973, and percentage capita
... Show MoreThe large number of failure in electrical power plant leads to the sudden stopping of work. In some cases, the necessary reserve materials are not available for maintenance which leads to interrupt of power generation in the electrical power plant unit. The present study, deals with the determination of availability aspects of generator in unit 5 of Al-Dourra electric power plant. In order to evaluate this generator's availability performance, a wide range of studies have been conducted to gather accurate information at the level of detail considered suitable to achieve the availability analysis aim. The Weibull Distribution is used to perform the reliability analysis via Minitab 17, and Artificial Neural Networks (ANNs) by approaching o
... Show MoreIn this work, an inventive photovoltaic evaporative cooling (PV/EC) hybrid system was constructed and experimentally investigated. The PV/EC hybrid system has the prosperous advantage of producing electrical energy and cooling the PV panel besides providing cooled-humid air. Two cooling techniques were utilized: backside evaporative cooling (case #1) and combined backside evaporative cooling with a front-side water spray technique (case #2). The water spraying on the front side of the PV panel is intermittent to minimize water and power consumption depending on the PV panel temperature. In addition, two pad thicknesses of 5 cm and 10 cm were investigated at three different water flow rates of 1, 2, and 3 lpm. In Case #1,
... Show MorePulsatile drug delivery systems are time-controlled dosage forms which are designed to release the active pharmaceutical ingredient after a predetermined lag time to synchronize the disease circadian rhythm. A migraine shows circadian rhythm with a marked increase in attacks between 6 a.m. and 8 a.m.
Sumatriptan is a selective agonist at serotonin (5-Hydroxy tryptamine1 (5-HT1))receptors, is an effective treatment for acute migraine attacks.
The aim of this work is to prepare time-controlled press-coated tablet with a lag time of 5.45 hrs.
Six formulas of fast dissolving core tablets and three formulas of press-coated tablets were prepared by using direct compression method using different variables to prepa
... Show MoreThe main objective of this work was to adopt an environmentally friendly technology with enhanced results. The technology of magnetic water (MW) treatment system can be used in concrete mixture production instead of potable water (PW) to improve both workability and strength. Two types of concrete were adopted: normal concreter production with two grades 25 and 35 MPa and the self-compacted concrete (SCC) with 35 MPa grade. The concrete mixes containing MW instead of PW results showed that, for 25 MPa grade, an improvement in a compressive strength of 15.1, 14.8, and 10.2% was achieved for 7, 28, and 90 days, respectively. For 35 MPa grade, an improvement of 13.6, 11.5, and
This study concerns the removal of a trihydrate antibiotic (Amoxicillin) from synthetically contaminated water by adsorption on modified bentonite. The bentonite was modified using hexadecyl trimethyl ammonium bromide (HTAB), which turned it from a hydrophilic to a hydrophobic material. The effects of different parameters were studied in batch experiments. These parameters were contact time, solution pH, agitation speed, initial concentration (C0) of the contaminant, and adsorbent dosage. Maximum removal of amoxicillin (93 %) was achieved at contact time = 240 min, pH = 10, agitation speed = 200 rpm, initial concentration = 30 ppm, and adsorbent dosage = 3 g bentonite per 1L of pollutant solution. The characterization of the adsorbent, modi
... Show MoreMachine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To
... Show MoreCommunity detection is an important and interesting topic for better understanding and analyzing complex network structures. Detecting hidden partitions in complex networks is proven to be an NP-hard problem that may not be accurately resolved using traditional methods. So it is solved using evolutionary computation methods and modeled in the literature as an optimization problem. In recent years, many researchers have directed their research efforts toward addressing the problem of community structure detection by developing different algorithms and making use of single-objective optimization methods. In this study, we have continued that research line by improving the Particle Swarm Optimization (PSO) algorithm using a
... Show More