In this study, geopolymer mortar was designed in various experimental combinations employing 1% micro steel fibers and was subjected to different temperatures, according to the prior works of other researchers. The geopolymer mortar was developed using a variety of sustainable material proportions (fly ash and slag) to examine the influence of fibers on its strength. The fly ash weight percentage was 50%, 60%, and 70% by slag weight to study its effect on the geopolymer mortar's properties. The optimal ratio produced the most significant results when mixed at a 50:50 ratio of fly ash and slag with 1% micro steel fibers at curing temperature 240oC for 4 hours through two days. The compressive strength of the geopolymer mortar increased by 11%, 11.5%, and 14% after 3, 7, and 28 days when utilizing fibers. The result shows that fly ash with a ratio of 50% by weight of slag improved the compressive strength of the mixture. It was discovered that a combination with 50% of the weight of fly ash with micro steel fibers, when treated at 240oC for curing age of 3, 7, and 28 days, had a flexural resistance rate of 28%, 30%, 33% higher than a mixture without fibers.
Background: Alginate impression material is the irreversible hydrocolloid material that is widely used in dentistry. The contact time between alginate and gypsum cast could have a detrimental effect on the properties of the gypsum cast. The objective of this study is to evaluate the impact of various contact time intervals of Alginate impressions & type III dental stone on surface properties of stone cast. Materials and Methods: Time intervals tested were 1hour, 6 hours and 9 hours. Surface properties of stone cast evaluated were surface detail reproduction, hardness and roughness. Surface detail reproduction was determined using cylindrical brass test block in accordance with ISO 1563. Surface roughness was measured by profilometer
... Show MoreCarbon fibre reinforced polymers are widely used to strengthen steel structural elements. These structural elements are normally subjected to static, dynamic and fatigue loadings during their life-time. A number of studies have focused on the characteristics of CFRP sheets bonded to steel members under static, dynamic and fatigue loadings. However, there is a gap in understanding the bonding behaviour between CFRP laminates and steel members under impact loading. This paper shows the effect of different load rates from quasi-static to 300 × 103 mm/min on this bond. Two types of CFRP laminate, CFK 150/2000 and CFK 200/2000, were used to strengthen steel joints using Araldite 420 epoxy. The results show a significant bond strength enhancemen
... Show MoreThe ability of Cr (VI) removal from aqueous solution using date palm fibers (leef) was investigated .The effects of pH, contact time, sorbets concentration and initial metal ions concentration on the biosorption were investigated.
The residual concentration of Cr (VI) in solution was determined colorimetrically using spectrophotometer at wave length 540 nm .The biosorption was pH-dependent, the optimum pH was 7 and adsorption isotherms obtained fitted well with Langmuir isotherms .The Langmuir equation obtained was Ce/Cs = 79.99 Ce-77.39, the correlation factor was 0.908.These results indicate that date palm fibers (leef) has a potential effect for the uptake of Cr (VI) from industrial waste water.
A single step extraction-cleanup procedure using porous membrane-protected micro-solid phase extraction (μ-SPE) in conjunction with liquid chromatography–tandem mass spectrometry for the extraction and determination of aflatoxins (AFs) B1, B2, G1 and G2 from food was successfully developed. After the extraction, AFs were desorbed from the μ-SPE device by ultrasonication using acetonitrile. The optimum extraction conditions were: sorbent material, C8; sorbent mass, 20 mg; extraction time, 90 min; stirring speed, 1000 rpm; sample volume, 10 mL; desorption solvent, acetonitrile; solvent volume, 350 μL and ultrasonication period, 25 min without salt addition. Under the optimum conditions, enrichment factor of 11, 9, 9 and 10 for AFG2, AFG1
... Show MorePurepolyaniline and doped with hydrochloric acid was prepared in different molarities at room temperature. The a.c electrical properties were stadied.AC conductivityσac (ω), is found to vary as ωS in the frequency range (100Hz-10MH), S< 1and decreases indicating a dominate hopping process. Thedielectric constant ε1and dielectric loss ε2 have been determined for bulk polyaniline. ε1 decrease with the increase frequency. Electrical conductivity measurements increase with the increases both of the amount of HCl and the dose of radiation. The dielectric investigations show decrease with dose radiation.
Zinc-indium-selenide ZnIn2Se4 (ZIS) ternary chalcopyrite thin film on glass with a 500 nm thickness was fabricated by using the thermal evaporation system with a pressure of approximately 2.5×10−5 mbar and a deposition rate of 12 Å/s. The effect of aluminum (Al) doping with 0.02 and 0.04 ratios on the structural and optical properties of film was examined. The utilization of X-ray diffraction (XRD) was employed to showcase the influence of aluminum doping on structural properties. XRD shows that thin ZIS-pure, Al-doped films at RT are polycrystalline with tetragonal structure and preferred (112) orientation. Where the
Aluminum doped zinc selenide ZnSe/n-Si thin films of (250∓20 nm) thickness with (0.01, 0.02 and 0.03), are depositing on the two type of substrate (glass and n-Si) to manufacture (ZnSe/n-Si) solar cell through using thermal vacuum evaporation procedure. physical and optoelectronic properties were examined for the samples. X-Ray and AFM techniques are using to study the structure properties. The energy band gap of as-deposited ZnSe thin films for changed dopant ratio were ranging from (2.6-2.68 eV). The results of Hall effect show that pure and doping films were (p-type), and the concentration carriers and the carriers mobility increases with increase Al-dopant ratio. The (C-V) have shown that the heterojunction were of abrupt type. In add
... Show More