The process of controlling a Flexible Joint Robot Manipulator (FJRM) requires additional sensors for measuring the state variables of flexible joints. Therefore, taking the elasticity into account adds a lot of complexity as all the additional sensors must be taken into account during the control process. This paper proposes a nonlinear observer that controls FJRM, without requiring equipment sensors for measuring the states. The nonlinear state equations are derived in detail for the FJRM where nonlinearity, of order three, is considered. The Takagi–Sugeno Fuzzy Model (T-SFM) technique is applied to linearize the FJRM system. The Luenberger observer is designed to estimate the unmeasured states using error correction. The developed Luenberger observer showed its ability to control the FJRM by utilizing only the measured signal of the velocity of the motor. Stability analysis is implemented to improve the ability of the designed observer to stabilize the FJRM system. The developed observer is tested by simulation to evaluate the ability of the observer to estimate the unknown states. The results showed that the proposed control algorithm estimated the motor angle, gear angle, link angle, angular velocity of gear, and angular velocity of link with zero steady errors.
Micro metal forming has an application potential in different industrial fields. Flexible tool-assisted sheet metal forming at micro scale is among the forming techniques that have increasingly attracted wide attention of researchers. This forming process is a suitable technique for producing micro components because of its inexpensive process, high quality products and relatively high production rate. This study presents a novel micro deep drawing technique through using floating ring as an assistant die with flexible pad as a main die. The floating ring designed with specified geometry is located between the process workpiece and the rubber pad. The function of the floating ring in this work is to produce SS304 micro cups with profile
... Show MoreTraffic loading and environmental factors are among the most serious variables that cause the spoilage of flexible pavements and lead to a decrease in their design life. The objective of this study is to investigate the influence of axle load raise and the change in resilient modulus on the flexible pavement design life. Locally, Highway geometric design code for Iraqi building code has assign certain admissible maximum load limits per every axle truck type that should not be overrun. In this paper nine different axle truck loads (8, 9, 10, 11, 12, 13, 14, 15, and 16) tons, single axle with dual tire and, and two different resilient moduli of asphalt pavement were chosen. The evaluation was carried out assuming high temperature to represent
... Show MoreAny design subject to a set of forces contributing to the establishment of relations working to strengthen the internal elements of the design; any imbalance in these elements can make a fragmented and weak design, thus preventing it from achieving the goal or performance. Poor performance can be attributed to various factors: the extent and function of the elements and principles in the design, realization of the idea, especially in fashion design.
Moreover, there are many aspects of a design that go into achieving the realization of the designer’s idea. The design utilizes a lot of stimulants by drawing attention to its design, which is consistent with the need for psychological and material individuals. In this research, we will
This work is concerned with the vibration attenuation of a smart beam interacting with fluid using proportional-derivative PD control and adaptive approximation compensator AAC. The role of the AAC is to improve the PD performance by compensating for unmodelled dynamics using the concept of function approximation technique FAT. The key idea is to represent the unknown parameters using the weighting coefficient and basis function matrices/vectors. The weighting coefficient vector is updated using Lyapunov theory. This controller is applied to a flexible beam provided with surface bonded piezo-patches while the vibrating beam system is submerged in a fluid. Two main effects are considered: 1) axial stretching of the vibrating beam that leads
... Show MoreIn this work, the possibility of a multiwavelength mode-locked fiber laser generation based on Four-Wave Mixing (FWM) induced by Fe2O3-SiO2 nanocomposite material is investigated for the first time. A multiwavelength mode-locked pulses fiber laser are generated from Ytterbium–doped fiber laser (YDFL) due to the combined action of high nonlinear absorption and high refractive coefficients of Fe2O3-SiO2 nanocomposite incorporated inside YDFL ring cavity. Up to more than 20 lasing lines in the 1040–1070 nm band with an equally lines separation of ~0.6 nm have been observed by just simple variation of passive modulation of the state of the polarization and the pump power altogether. Moreover, a passively mode-locked operation of YDFL laser
... Show More