Tungsten inert gas arc welding–based shaped metal deposition is a novel additive manufacturing technology which can be used for fabricating solid dense parts by melting a cold wire on a substrate in a layer-by-layer manner via continuous DC arc heat. The shaped metal deposition method would be an alternative way to traditional manufacturing methods, especially for complex featured and large-scale solid parts manufacturing, and it is particularly used for aerospace structural components, manufacturing, and repairing of die/molds and middle-sized dense parts. This article presents the designing, constructing, and controlling of an additive manufacturing system using tungsten inert gas plus wire–based shaped metal deposition method. The aim of this work is to design and develop tungsten inert gas plus wire–based shaped metal deposition system to be used for fabricating different components directly from computer-aided design data with minimum time consumed in programming and less boring task compared to conventional robotic systems. So, this article covers the important design steps from computer-aided design data to the final deposited part. The developed additive system is capable of producing near-net-shaped components of sizes not exceeding 400 mm in three-dimensional directly from computer-aided design drawing. The results showed that the developed system succeeded to produce near-net-shaped parts for various features of SS308LSi components. Additionally, workshop tests have been conducted in order to verify the capability and reliability of the developed additive manufacturing system. The developed system is also capable of reducing the buy-to-fly ratio from 5 to 2 by reducing waste material from 1717 to 268 g for the sample components.
Non-additive measures and corresponding integrals originally have been introduced by Choquet in 1953 (1) and independently defined by Sugeno in 1974 (2) in order to extend the classical measure by replacing the additivity property to non-additive property. An important feature of non –additive measures and fuzzy integrals is that they can represent the importance of individual information sources and interactions among them. There are many applications of non-additive measures and fuzzy integrals such as image processing, multi-criteria decision making, information fusion, classification, and pattern recognition. This paper presents a mathematical model for discussing an application of non-additive measures and corresp
... Show MoreThe power generation of solar photovoltaic (PV) technology is being implemented in every nation worldwide due to its environmentally clean characteristics. Therefore, PV technology is significantly growing in the present applications and usage of PV power systems. Despite the strength of the PV arrays in power systems, the arrays remain susceptible to certain faults. An effective supply requires economic returns, the security of the equipment and humans, precise fault identification, diagnosis, and interruption tools. Meanwhile, the faults in unidentified arc lead to serious fire hazards to commercial, residential, and utility-scale PV systems. To ensure secure and dependable distribution of electricity, the detection of such ha
... Show MoreIn order to specify the features of higher education process and its quantitative and qualitative development in Iraq ; one should look back at its historical process and the need of interesting with it .
Accordingly , there will be a chance for verifying the demand of the Iraqi society according to the political , social , and cultural changes especially during the national governance (1932 – 1958 ) .
For depicting the most important quantitative and qualitative development of this kind of education the period of 1932 -1958 , and since there is no previous study that tackled this topic , here comes the need of writing this paper .
After historical
... Show MoreMotivated by the vital role played by transition metal nitride (TMN) composites in various industrial applications, the current study reports electronic properties, thermodynamic stability phase diagram, and vacancy formation energies of the plausible surfaces of NiAs and WC-type structures of δ3-MoN and δ-WN hexagonal phases, respectively. Low miller indices of various surface terminations of δ3-MoN and δ-WN namely, (100), (110), (111), and (001) have been considered. Initial cleaving of δ3-MoN bulk unit cell offers separate Mo and N terminations signified as δ3-MoN (100): Mo, δ3-MoN(100):N, δ3-MoN(111):Mo, δ3-MoN(111):Mo, and δ3-MoN(001):Mo. However, the (110) plane reveals mix-truncated with both molybdenum and nitrogen atoms i
... Show MoreThe agricultural activity has a great significance in the all four dimensions of sustainable development. Firstly, the economic dimension which it contributes with the GDP, as well as, it is considered as an important source to attract the investment. Secondly, the environmental dimension which also contributes with conserving of the biodiversity, combating the desertification, and increasing the farmlands. Thirdly, for its role in the social dimension to achieve the food security, to eradicate the poverty, and providing jobs. Fourthly, toward the institutional dimension as well it is considered as a source that allows all people to participate effectively, and to exchange of the local and universal experiences and perspectives. For conf
... Show MoreThe results of theoretical and experimental investigations carried out to study the effect of load and relative sliding speed on the abrasive wear behavior in drilling bit teeth surfaces of an insert tungsten carbide bit have been presented. Experimentally, an apparatus for abrasive wear tests conducted on the modified ASTM-G65 was modified and fabricated to facilitate loading and measurement of wear rate for the sand/ steel wheel abrasion test, which involves two cases of contact; first is at dry sand and second is under wet condition. These tests have been carried under varied operating parameters of normal load and sliding speed. A theoretical model based upon the Archard equation has been developed for predicting wear simulation by u
... Show MoreNanostructured photodetectors have garnered great attention due to their enriched electronic and optical properties. In this work, we aim to fabricate a high-performance CeO2/Si photodetector by growing a CeO2 nanostructure film on a silicon substrate using the pulsed laser deposition (PLD) technique at different laser energy densities. The impact of laser energy density and the number of pulses on the morphological, optical, and electrical properties was studied. Field emission scanning electron microscopy (FESEM) results show that the CeO2 film has a spherical grain morphology with an average grain size ranging from 33 to 54 nm, depending on the laser energy density. The film deposited at various numbers of laser pulses also has spherical
... Show MoreMature oil reservoirs surrounded with strong edge and bottom water drive aquifers experience pressure depletion and water coning/cresting. This laboratory research investigated the effects of bottom water drive and gas breakthrough on immiscible CO2-Assisted Gravity Drainage (CO2-AGD), focusing on substantial bottom water drive. The CO2-AGD method vertically separates the injected CO2 to formulate a gas cap and Oil. Visual experimental evaluation of CO2-AGD process performance was performed using a Hele-Shaw model. Water-wet sand was used for the experiments. The gas used for injection was pure CO2, and the “oleic” phase was n-decane with a negative spreading coefficient. The aqueous phase was deionized water. To evaluate the feasibilit
... Show More