The regressor-based adaptive control is useful for controlling robotic systems with uncertain parameters but with known structure of robot dynamics. Unmodeled dynamics could lead to instability problems unless modification of control law is used. In addition, exact calculation of regressor for robots with more than 6 degrees of freedom is hard to be calculated, and the task could be more complex for robots. Whereas the adaptive approximation control is a powerful tool for controlling robotic systems with unmodeled dynamics. The local (partitioned) approximation-based adaptive control includes representation of the uncertain matrices and vectors in the robot model as finite combinations of basis functions. Update laws for the weighting matri
... Show MoreIn this paper, a new method of selection variables is presented to select some essential variables from large datasets. The new model is a modified version of the Elastic Net model. The modified Elastic Net variable selection model has been summarized in an algorithm. It is applied for Leukemia dataset that has 3051 variables (genes) and 72 samples. In reality, working with this kind of dataset is not accessible due to its large size. The modified model is compared to some standard variable selection methods. Perfect classification is achieved by applying the modified Elastic Net model because it has the best performance. All the calculations that have been done for this paper are in
Salicylaldehyde was reacting with 2-amino benzoic acid to produce the Schiff base ligand benzoic acid 2-salicylidene (L). The prepared ligand was identified by Microelemental Analysis, FT.IR and UV-Vis spectroscopic techniques. A new complexes of Co(II),Ni(II),Cu(II) and Zn(II) with Schiff base was prepared in aqueous ethanol with a (1:1) M:L. The prepared complexes were characterized using flame atomic absorption, (C.H.N) Analysis, FT.IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. Biological activity of the ligand and complexes against three selected types of bacteria were also examined. Some of the complexes exhibit good bacterial activities. From the obtained data the tetrahedral str
... Show MorePolycystic ovary syndrome (PCOS) referring to a syndrome that is recognized as a life-course disease and has both metabolic and reproductive signs; main pathophysiological cause includes insulin resistance, hyperandrogenism, and oxidative stress state. The study aimed to assess the impact of combining Myoinositol and Metformin, the main insulin-sensitizing drugs, on improving clinical, metabolic, and hormonal parameters in females with PCOS. A clinical trial that was prospective, randomized, and comparative on 54 patients (aged 18-40 y) are divided into three groups: group1 patients allocated to receive Myo-inositol(4g), group2 patients assigned to receive Metformin(1g) and group3 patients assigned to receive Myo-inositol(4g) + Metformin
... Show MoreFace Identification is an important research topic in the field of computer vision and pattern recognition and has become a very active research area in recent decades. Recently multiwavelet-based neural networks (multiwavenets) have been used for function approximation and recognition, but to our best knowledge it has not been used for face Identification. This paper presents a novel approach for the Identification of human faces using Back-Propagation Adaptive Multiwavenet. The proposed multiwavenet has a structure similar to a multilayer perceptron (MLP) neural network with three layers, but the activation function of hidden layer is replaced with multiscaling functions. In experiments performed on the ORL face database it achieved a
... Show MoreFace Identification is an important research topic in the field of computer vision and pattern recognition and has become a very active research area in recent decades. Recently multiwavelet-based neural networks (multiwavenets) have been used for function approximation and recognition, but to our best knowledge it has not been used for face Identification. This paper presents a novel approach for the Identification of human faces using Back-Propagation Adaptive Multiwavenet. The proposed multiwavenet has a structure similar to a multilayer perceptron (MLP) neural network with three layers, but the activation function of hidden layer is replaced with multiscaling functions. In experiments performed on the ORL face database it achieved a
... Show MoreIn this paper a nonlinear adaptive control method is presented for a pH process, which is difficult to control due to the nonlinear and uncertainties. A theoretical and experimental investigation was conducted of the dynamic behavior of neutralization process in a continuous stirred tank reactor (CSTR). The process control was implemented using different control strategies, velocity form of PI control and nonlinear adaptive control. Through simulation studies it has been shown that the estimated parameters are in good agreement with the actual values and that the proposed adaptive controller has excellent tracking and regulation performance.
In this paper, Touchard polynomials (TPs) are presented for solving Linear Volterra integral equations of the second kind (LVIEs-2k) and the first kind (LVIEs-1k) besides, the singular kernel type of this equation. Illustrative examples show the efficiency of the presented method, and the approximate numerical (AN) solutions are compared with one another method in some examples. All calculations and graphs are performed by program MATLAB2018b.
Computer vision seeks to mimic the human visual system and plays an essential role in artificial intelligence. It is based on different signal reprocessing techniques; therefore, developing efficient techniques becomes essential to achieving fast and reliable processing. Various signal preprocessing operations have been used for computer vision, including smoothing techniques, signal analyzing, resizing, sharpening, and enhancement, to reduce reluctant falsifications, segmentation, and image feature improvement. For example, to reduce the noise in a disturbed signal, smoothing kernels can be effectively used. This is achievedby convolving the distributed signal with smoothing kernels. In addition, orthogonal moments (OMs) are a cruc
... Show More