Flexible job-shop scheduling problem (FJSP) is one of the instances in flexible manufacturing systems. It is considered as a very complex to control. Hence generating a control system for this problem domain is difficult. FJSP inherits the job-shop scheduling problem characteristics. It has an additional decision level to the sequencing one which allows the operations to be processed on any machine among a set of available machines at a facility. In this article, we present Artificial Fish Swarm Algorithm with Harmony Search for solving the flexible job shop scheduling problem. It is based on the new harmony improvised from results obtained by artificial fish swarm algorithm. This improvised solution is sent to comparison to an overall best solution. When it is the better one, it replaces with the artificial fish swarm solution from which this solution was improvised. Meanwhile the best improvised solutions are carried over to the Harmony Memory. The objective is to minimize a total completion time (makespan) and to make the proposed approach as a portion of the expert and the intelligent scheduling system for remanufacturing decision support. Harmony search algorithm has demonstrated to be efficient, simple and strong optimization algorithm. The ability of exploration in any optimization algorithm is one of the key points. The obtained optimization results show that the proposed algorithm provides better exploitation ability and enjoys fast convergence to the optimum solution. As well, comparisons with the original artificial fish swarm algorithm demonstrate improved efficiency.
ABSTRACT: Ultimate bearing capacity of soft ground reinforced with stone column was recently predicted using various artificial intelligence technologies such as artificial neural network because of all the advantages that they can offer in minimizing time, effort and cost. As well as, most of applied theories or predicted formulas deduced analytically from previous studies were feasible only for a particular testing environment and do not match other field or laboratory datasets. However, the performance of such techniques depends largely on input parameters that really affect the target output and missing of any parameter can lead to inaccurate results and give a false indicator. In the current study, data were collected from previous rel
... Show MoreThis included the study of embryonic development of the heart in different lengths of embryos of Sailfin molly (Poecelia latipinna) fish, which is one of the invasive fish species in Iraq and is spread acrosswater bodies, especially in the marshes that are located in the south of Iraq. The fish samples were collected from the AGhazl market in Baghdad province, and dissected to remove the ovary that containing embryos at different lengths using fine forceps. All the samples were fixed using formalin after making a hole in the gas sac, especially in advanced embryos stage. In a 3 mm embryo, the heart was completely formed and the blood vessels and optic cup were clear, while the lens of the eye was beginning to form. In 4-5 mm embryo, it was
... Show MoreIn this paper, a computational method for solving optimal problem is presented, using indirect method (spectral methodtechnique) which is based on Boubaker polynomial. By this method the state and the adjoint variables are approximated by Boubaker polynomial with unknown coefficients, thus an optimal control problem is transformed to algebraic equations which can be solved easily, and then the numerical value of the performance index is obtained. Also the operational matrices of differentiation and integration have been deduced for the same polynomial to help solving the problems easier. A numerical example was given to show the applicability and efficiency of the method. Some characteristics of this polynomial which can be used for solvin
... Show MoreGiven the importance of increasing economic openness transport companies’ face various issues arising at present time, this required importing different types of goods with different means of transport. Therefore, these companies pay great attention to reducing total costs of transporting commodities by using numbers means of transport methods from their sources to the destinations. The majority of private companies do not acquire the knowledge of using operations research methods, especially transport models, through which the total costs can be reduced, resulting in the importance and need to solve such a problem. This research presents a proposed method for the sum of Total Costs (Tc) of rows and columns, in order to arrive at the init
... Show MoreIn this article, the nonlinear problem of Jeffery-Hamel flow has been solved analytically and numerically by using reliable iterative and numerical methods. The approximate solutions obtained by using the Daftardar-Jafari method namely (DJM), Temimi-Ansari method namely (TAM) and Banach contraction method namely (BCM). The obtained solutions are discussed numerically, in comparison with other numerical solutions obtained from the fourth order Runge-Kutta (RK4), Euler and previous analytic methods available in literature. In addition, the convergence of the proposed methods is given based on the Banach fixed point theorem. The results reveal that the presented methods are reliable, effective and applicable to solve other nonlinear problems.
... Show MoreThe introduction of Industry 4.0, to improve Internet of Things (IoT) standards, has sparked the creation of 5G, or highly sophisticated wireless networks. There are several barriers standing in the way of 5G green communication systems satisfying the expectations for faster networks, more user capacity, lower resource consumption, and cost‐effectiveness. 5G standards implementation would speed up data transmission and increase the reliability of connected devices for Industry 4.0 applications. The demand for intelligent healthcare systems has increased globally as a result of the introduction of the novel COVID‐19. Designing 5G communication systems presents research problems such as optimizing
The problem of Bi-level programming is to reduce or maximize the function of the target by having another target function within the constraints. This problem has received a great deal of attention in the programming community due to the proliferation of applications and the use of evolutionary algorithms in addressing this kind of problem. Two non-linear bi-level programming methods are used in this paper. The goal is to achieve the optimal solution through the simulation method using the Monte Carlo method using different small and large sample sizes. The research reached the Branch Bound algorithm was preferred in solving the problem of non-linear two-level programming this is because the results were better.