This article investigates the development of the following material properties of concrete with time: compressive strength, tensile strength, modulus of elasticity, and fracture energy. These properties were determined at seven different hydration ages (18 h, 30 h, 48 h, 72 h, 7 days, 14 days, 28 days) for four pure cement concrete mixes totaling 336 specimens tested throughout the study. Experimental data obtained were used to assess the relationship of the above properties with the concrete compressive strength and how these relationships are affected with age. Further, this study investigates prediction models available in literature and recommendations are made for models that are found suitable for application to early age concrete. Results obtained indicate that the relationship between the splitting tensile strength and concrete compressive strength can be approximated with a power function between 0.7 and 0.8, and this correlation is not affected by age. Fracture energy of the concrete and modulus of elasticity values obtained in this study correlate well with the square root of the compressive strength and it was found that this relationship holds true for all hydration ages investigated in this paper. Inverse analysis on the wedge-splitting test was conducted to determine the direct tensile strength. Values of tensile strength obtained from the inverse analysis have been validated numerically by carrying out finite element analysis on the wedge split, and anchor pull-out tests. The ratio of the tensile strength obtained from the inverse analysis to the splitting tensile strength was found to be in the range of 0.5–0.9 and 0.7 on average.
In this study, the effect of the combination of micro steel fibers and additives (calcium hydroxide and sodium carbonate) on the size of cracks formation and healing them were investigated. This study aims to apply the use of self-healing phenomenon to repair cracks and to enhance the service life of the concrete structures. Micro steel fibers straight type were used in this research with 0.2% and 0.4% by volume of concrete. A weight of 20 and 30 kg/m3 of Ca(OH)2 and 2 and 3 kg/m3 of Na2CO3 were used as a partial cement replacement. The results confirm that the concrete cracks were significantly self-healed up to 30 days re-curing. Cracks width up to 0.2 mm were comp
... Show MoreImproving in assembling technology has provided machines of higher evaluation with better resistances and managed behavior. This machinery led to remarkably higher dynamic forces and therefore higher stresses. In this paper, a dynamic investigation of rectangular machine diesel and gas engines foundation at the top surface of one-layer dry sand with various states (i.e., loose, medium and dense) was carried out. The dynamic investigation is performed numerically by utilizing limited component programming, PLAXIS 3D. The soil is accepted as flexible totally plastic material submits to Mohr-Coulomb yield basis. A harmonic load is applied at the foundation with amplitude of 10 kPa at a frequency of (10, 15 and 20) HZ and se
... Show MoreThis research foxed on the effect of fire flame of different burning temperatures (300, 400 and 500)oC on the compressive strength of reactive powder concrete (RPC).The steady state duration of the burning test was (60)min. Local consuming material were used to mixed a RPC of compressive strength around (100) MPa. The tested specimens were reinforced by (3.0) cm hooked end steel fiber of (1100) MPa yield strength. Three steel fiber volume fraction were adopted in this study (0, 1.0and 1.5)% and two cooling process were included, gradual and sudden. It was concluding that increasing burning temperature decreases the residual compressive strength for RPC specimens of(0%) steel fiber volume fraction by (12.16, 19.46&24.49) and (18.20, 27.77 &3
... Show MoreThe main factors that make it possible to get the corrosion of reinforcing steel in concrete are chloride ions and the absorption of carbon dioxide from the environment, and each of them works with a mechanism which destroys the stable immunity of rebar in the concrete. In this work the effect of carbon dioxide content in the artificial concrete solution on the corrosion behavior of carbon steel reinforcing bar (CSRB) was studied, potentiostatically using CO2 stream gas at 6 level of concentrations; 0.03 to 2.0 weight percent, and the effect of rising electrolyte temperature was also followed in the range 20 to 50ᴼ C. Tafel plots and cyclic polarization procedures were obeyed to investigate the c
... Show MoreExperimental work was carried out to investigate the effect of fire flame (high temperature) on specimens of one way slabs using Self Compacted Concrete (SCC). By using furnace manufactured for this purpose, twenty one reinforced concrete slab specimens were exposed to direct fire flame. All of specimens have the same dimensions. The slab specimens were cooled in two types, gradually by left them in the air and suddenly by using water. After that the specimens were tested under two point loads, to study, the effect of
different: temperature levels (300ºC, 500ºC and 700ºC), and cooling rate (gradually and sudden cooling conditions) on the concrete compressive strength, modulus of rupture, flexural strength and the behavior of reinf
Steel–concrete–steel (SCS) structural systems have economic and structural advantages over traditional reinforced concrete; thus, they have been widely used. The performance of concrete made from recycled rubber aggregate from scrap tires has been evaluated since the early 1990s. The use of rubberized concrete in structural construction remains necessary because of its high impact resistance, increases ductility, and produces a lightweight concrete; therefore, it adds such important properties to SCS members. In this research, the use of different concrete core materials in SCS was examined. Twelve SCS specimens were subjected to push-out monotonic loading for inspecting their mechanical performance. One specimen was constructed from co
... Show MoreEco-friendly concrete is produced using the waste of many industries. It reduces the fears concerning energy utilization, raw materials, and mass-produced cost of common concrete. Several stress-strain models documented in the literature can be utilized to estimate the ultimate strength of concrete components reinforced with fibers. Unfortunately, there is a lack of data on how non-metallic fibers, such as polypropylene (PP), affect the properties of concrete, especially eco-friendly concrete. This study presents a novel approach to modeling the stress-strain behavior of eco-friendly polypropylene fiber-reinforced concrete (PFRC) using meta-heuristic particle swarm optimization (PSO) employing 26 PFRC various mixtures. The cement was partia
... Show MoreIn this study, the effect of fire flame on the punching shear strength of steel fiber reinforced concrete flat plates was experimentally investigated using nine half-scale specimens with dimensions of 1500×1500 mm and a total thickness of 100 mm. The main investigated variables comprised the steel fiber volume fraction 0, 1, and 1.5% and the burning steady state temperature 500 and 600 °C. The specimens were divided into three groups, each group consists of three specimens. The specimens in the first group were tested with no fire effect to be the reference specimens, while the others of the second and third groups were tested after being exposed to fire-flame effect. The adopted characteristics of the fire test were; (one hour) b
... Show MoreThis study aimed to investigate the incorporation of recycled waste compact discs (WCDs) powder in concrete mixes to replace the fine aggregate by 5%, 10%, 15% and 20%. Compared to the reference concrete mix, results revealed that using WCDs powder in concrete mixes improved the workability and the dry density. The results demonstrated that the compressive, flexural, and split tensile strengths values for the WCDs-modified concrete mixes showed tendency to increase above the reference mix. However, at 28 days curing age, the strengths values for WCDs-modified concrete mixes were comparable to those for the reference mix. The leaching test revealed that none of the WCDs constituents was detected in the leachant after 180 days. The
... Show More