Wettability of CO2-brine-mineral systems plays a vital role during geological CO2-storage. Residual trapping is lower in deep saline aquifers where the CO2 is migrating through quartz rich reservoirs but CO2 accumulation within a three-way structural closure would have a high storage volume due to higher CO2 saturation in hydrophobic quartz rich reservoir rock. However, such wettability is only poorly understood at realistic subsurface conditions, which are anoxic or reducing. As a consequence of the reducing environment, the geological formations (i.e. deep saline aquifers) contain appreciable concentrations of various organic acids. We thus demonstrate here what impact traces of organic acids exposed to storage rock have on their wettability. Technically, we tested hexanoic acid, lauric acid, stearic acid and lignoceric acid and measured wettability as a function of organic acid concentration at realistic storage conditions (i.e. 25 MPa and 323 K (50 °C)). In addition, measurements were also conducted at ambient conditions in order to quantify the incremental pressure effect on wettability. Clearly, the quartz surface turned significantly less water-wet with increasing organic acid concentrations, even at trace concentrations. Importantly, we identified a threshold concentration at ˜10−6 M organic acid, above which quartz wetting behaviour shifts from strongly water-wet to an intermediate-wet state. This wettability shift may have important consequences for CO2 residual trapping capacities, which may be significantly lower than for traditionally assumed water-wet conditions where CO2 is migrating through quartz rich reservoirs.
Metal-organic frameworks (MOFs) have emerged as revolutionary materials for developing advanced biosensors, especially for detecting reactive oxygen species (ROS) and hydrogen peroxide (H₂O₂) in biomedical applications. This comprehensive review explores the current state-of-the-art in MOF-based biosensors, covering fundamental principles, design strategies, performance features, and clinical uses. MOFs offer unique benefits, including exceptional porosity (up to 10,400 m²/g), tunable structures, biocompatibility, and natural enzyme-mimicking properties, making them ideal platforms for sensitive and selective detection of ROS and H₂O₂. Recent advances have shown significant improvements in detection capabilities, with limit
... Show MoreExperiments were carried out at the College of Veterinary Medicine, University of Baghdad, during the period from October 26th 2023 to December 20th 2023, to study the effect of pasteurizing treatments of shell table egg using traditional Microwave oven on its quality characteristics during Zero, 1, 2, 4 and 8 weeks of refrigerator storage. A total of 120 fresh table eggs (White shell eggs) were collected from 20000 Luhman layer hens flock at Al-Amir project commercial farm, Al-Musaib city. These eggs were divided into 4 treatment of microwave pasteurization treatments which were Zero, 10, 20, and 30 sec. Results revealed that the numbers of total bacteria and total coliform on the surface of table egg shells is affected by pasteuri
... Show MoreAn experiments were carried out at the College of Veterinary Medicine, University of Baghdad, during the period from October 26th 2023 to December 20th 2023, to study the effect of pasteurizing treatments of shell table egg using traditional Microwave oven on its quality characteristics during Zero, 1, 2, 4 and 8 weeks of refrigerator storage. A total of 120 fresh table eggs (White shell eggs) were collected from 20000 Luhman layer hens flock at Al-Amir project commercial farm, Al-Musaib city. These eggs were divided into 4 treatment of microwave pasteurization treatments which were Zero, 10, 20, and 30 sec. Results revealed that significant differences (P<0.05) for the internal characteristics of the egg after storage for 2, 4
... Show MoreIn this study, the effect of the thermal conductivity of phase change material (PCM) on the performance of thermal energy storage has been analyzed numerically. A horizontal concentric shell-and-tube latent heat thermal energy storage system (LHTESS) has been performed during the solidification process. Two types of paraffin wax with different melting temperatures and thermal conductivity were used as a PCM on the shell side, case1=0.265W/m.K and case2=0.311 W/m.K. Water has been used as heat transfer fluid (HTF) flow through in tube side. Ansys fluent has been used to analyze the model by taking into account phase change by the enthalpy method used to deal with phase transition. The numerical simulatio
... Show MoreThis paper details the process of designing, analysing, manufacturing, and testing an integrated solid-state hydrogen storage system. Analysis is performed to optimise flow distribution and pressure drop through the channels, and experimental investigations compare the effects of profile shape on the overall power output from the fuel cell. The storing of hydrogen is given much attention in the selection of a storage medium, and the effect of a cooling system to reduce the recharging time of the hydrogen storage vessel. The PTFE seal performed excellently, holding pressure over 60 bar, despite requiring changing each time the cell is opened. The assembly of the vessel was simple and straightforward, and there was no indication of pressure
... Show MoreThe purpose of this study is to show the constants and variables geography in Russian
policy in light of variables geostrategic witnessed by the world, especially after the collapse
of the Soviet Union and the disintegration to fifteen Republic became the Russian Federation
and the heir to the Soviet Union, Geography particularly important because the impact of its
data in policy making less change ofothers, and explain the political choices cannot achieve
security through its relationship constants geographical (natural or human) paint forms of
economic activity and determine the points they national security. issue is the geographical
this or that country is determined by its policy also specifies the way in which
Low-level microbial activity due to the production of organic acids is a recognized problem during the initial phase of food waste composting. Increasing such activity levels by adjusting the pH values during the initial composting phase is the primary objective to be investigated. In this study, sodium acetate (NaoAc) was introduced as an amendment to an in-vessel composting system. NaoAc was added when the pH of the compost mixture reached a low level (pH < 5), the addition increased pH to 5.8. This had a positive effect on the degradation of organic materials i.e. the formation of methane gas compared to the results without NaoAc addition.
The results also proved that anaerobic-aerobic in-vessel composting could reduce the
... Show MoreIn the present study, thin films of organic semiconductors Nickel PhthalocyanineTetrasulfonic Acid Tetrasodium Salt (NiPcTs) and inorganic semiconductor (CdS) prepared from the mixing of liquids for thesetwomaterials with different size ratios by the spin coating method on pre-patterned (Fluorine-doped Tin Oxide) FTO coated glass substrates and then the manufacture of solar cells. The properties of solar cells the study through the optical properties (absorption spectra, absorption coefficient, power gap) and electrical characteristics (continuous onductivity, Hall Effect and cell efficiency measurements) and Was obtainedThe efficiency of a multiple solar cell ranging from (0.16-13.2 %)