Although the axial aptitude and pile load transfer under static loading have been extensively documented, the dynamic axial reaction, on the other hand, requires further investigation. During a seismic event, the pile load applied may increase, while the soil load carrying capacity may decrease due to the shaking, resulting in additional settlement. The researchers concentrated their efforts on determining the cause of extensive damage to the piles after the seismic event. Such failures were linked to discontinuities in the subsoil due to abrupt differences in soil stiffness, and so actions were called kinematic impact of the earthquake on piles depending on the outcomes of laboratory tests and other numerical analyses. In this research, numerical modeling is used to explore the kinematic forces created in a single pile erected in two sand layers under two different conditions (dry and saturated states). Based on the obtained results from the physical model, the maximum bending moment was observed at a depth around 200 mm below the ground surface in the loose sand layer, then these values gradually reduced until it becomes negative in the dense sand layer. It has been demonstrated that this modeling may be used to predict how a pile foundation would respond to “kinematic” loading generated by ground movements during a seismic event. Consequently, the current findings could be used in the design and construction of bored aluminum or steel piles in Al-Karbala soil.
Radiation measuring devices need to periodic calibration process to examine their sensitivity and the extent of the response. This study is used to evaluate the radiation doses of the workers in the laboratories of the Directorate of Safety as a result of the use of point sources in calibrating of the devices in two ways, the first is the direct measurement by the FAG device and the others using RESRAD and RAD PRO programs. The total doses values using FAG were (2.57 μSv/y, 102.3 μSv/y and 20.75 μSv/y for TLD laboratory, Gamma spectroscopy analyses (GSA) laboratory and equipment store respectively, and the total doses that calculated using RESRAD and RAD PRO were 1.518 μSv/y, 76.65 μSv/y and 21.2 μSv/y for the above laboratories. t
... Show MoreThis study was aimed to conduct one of the vertical garden systems , selecting suitable plant species that with stand the climate conditions of Baghdad city in outer space to determine the appropriate growing medium for the (LWS), and to assess the impact of spraying with potassium silicate on the resistance of the cultivated plants to heat stresses . The study carried out at at Al-Batool Park of (Al-Kadhimiya Holy City). Two experiments were carried out, each one with a different plant species, including Wedelia trilobata and Tradescantia pallida, during the winter season of 2021 and summer season of 2022. The experiments were designed using a split block design. The experiments included two factors, the first being the growing med
... Show MoreThis study was aimed to determine a phytotoxicity experiment with kerosene as a model of a total petroleum hydrocarbon (TPHs) as Kerosene pollutant at different concentrations (1% and 6%) with aeration rate (0 and 1 L/min) and retention time (7, 14, 21, 28 and 42 days), was carried out in a subsurface flow system (SSF) on the Barley wetland. It was noted that greatest elimination 95.7% recorded at 1% kerosene levels and aeration rate 1L / min after a period of 42 days of exposure; whereas it was 47% in the control test without plants. Furthermore, the percent of elimination efficiencies of hydrocarbons from the soil was ranged between 34.155%-95.7% for all TPHs (Kerosene) concentrations at aeration rate (0 and 1 L/min). The Barley c
... Show MoreThis study aimed to evaluate the effectiveness of a novel concrete-encased column (CE) using small circular steel tubes filled with cementitious grouting material (GFST) as the primary reinforcement instead of traditional steel bars. The research involved three different types of reinforcement: conventional steel bars, concrete-filled steel tubes with 30% of the reinforcement ratio of steel bars, and concrete-filled steel tubes with the same reinforcement ratio as steel bars. Twenty-four circular concrete columns were tested and categorized into six groups based on the type of reinforcement employed. Each group comprised four columns, with one subjected to concentric axial load, two subjected to eccentric axial load (with eccentrici
... Show MoreThis work investigates generating of pure phase Faujasite-type zeolite Y at the ranges chosen for this study via a static aging step in the absence of seeds synthesis. Nano-sized crystals may result when LUDOX AS-40 is used as a silica source for gel composition of range 6 and the crystallization step may be conducted for a period of 4 to 19 hr at 100 ⁰C. Moreover, large-crystals with high crystallinity pure phase Y zeolite can be obtained at hereinabove conditions but when hydrous sodium metasilicate is used as a silica source. The other selected ranges also offer pure phase Y zeolite at the same controlled conditions.
This work investigates generating of pure phase Faujasite-type zeolite Y at the ranges chosen for this study via a static aging step in the absence of seeds synthesis. Nano-sized crystals may result when LUDOX AS-40 is used as a silica source for gel composition of range 6 and the crystallization step may be conducted for a period of 4 to 19 hr at 100 ⁰C. Moreover, large-crystals with high crystallinity pure phase Y zeolite can be obtained at hereinabove conditions but when hydrous sodium metasilicate is used as a silica source. The other selected ranges also offer pure phase Y zeolite at the same controlled conditions.
Physical model tests were simulated non-aqueous phase liquid (NAPL) spill in two-dimensional
domain above the water table. Four laboratory experiments were carried out in the sand-filled
tank. The evolution of the plume was observed through the transparent side of this tank and the
contaminant front was traced at appropriate intervals. The materials used in these experiments
were Al-Najaf sand as a porous medium and kerosene as contaminant.
The results of the experiments showed that after kerosene spreading comes to a halt (ceased) in
the homogeneous sand, the bulk of this contaminant is contained within a pancake-shaped lens
situated on top of the capillary fringe.