The Internet of Things (IoT) is an expanding domain that can revolutionize different industries. Nevertheless, security is among the multiple challenges that it encounters. A major threat in the IoT environment is spoofing attacks, a type of cyber threat in which malicious actors masquerade as legitimate entities. This research aims to develop an effective technique for detecting spoofing attacks for IoT security by utilizing feature-importance methods. The suggested methodology involves three stages: preprocessing, selection of important features, and classification. The feature importance determines the most significant characteristics that play a role in detecting spoofing attacks. This is achieved via two techniques: decision tree (DT) and mutual information (MI). For classification, adaptive boosting (AdaBoost), XGBoost and categorical boosting (CatBoosting) are used to categorize incoming data as normal or spoofing. The experimental results indicate the efficiency of the suggested approach for correctly identifying spoofing attacks with high accuracy, fewer false positives, and reduced time needed. By utilizing feature importance and robust classification algorithms, the system can accurately differentiate between legitimate and malicious IoT traffic, thereby improving the overall security of IoT networks. The CatBoost classifier outperformed the AdaBoost and XGBoost classifiers in terms of accuracy.
Composite materials are widely used in the engineered assets as aerospace structures, marine and air navigation owing to their high strength/weight ratios. Detection and identification of damage in the composite structures are considered as an important part of monitoring and repairing of structural systems during the service to avoid instantaneous failure. Effective cost and reliability are essential during the process of detecting. The Lamb wave method is an effective and sensitive technique to tiny damage and can be applied for structural health monitoring using low energy sensors; it can provide good information about the condition of the structure during its operation by analyzing the propagation of the wave in the
... Show MoreDye-sensitized solar cells (DSSC) create imitation photosynthesis by using chemical reactions to produce electricity from sunlight. DSSC has been pursued in numerous studies due to its capability to achieve efficiencies of up to 15% with artificial photosensitizer in diffuse light. However, artificial photosensitizers present a limitation because of the complex processing of metal compound. Therefore, various types of sensitizers were developed and synthesized to surpass the artificial sensitizer performances such as natural sensitizers from bio-based materials including plants, due to simple processing techniques and low environmental impact. Thus, this study examines the potential and properties of natural sensitizers from the was
... Show MoreMany tools and techniques have been recently adopted to develop construction materials that are less harmful and friendlier to the environment. New products can be achieved through the recycling of waste material. Thus, this study aims to use recycled glass bottles as sustainable materials.
Our challenge is to use nano glass powder by the addition or replacement of the weight of the cement for producing concrete with enhanced strength.
A nano recycled glass p
In this work, we first construct Hermite wavelets on the interval [0,1) with it’s product, Operational matrix of integration 2^k M×2^k M is derived, and used it for solving nonlinear Variational problems with reduced it to a system of algebric equations and aid of direct method. Finally, some examples are given to illustrate the efficiency and performance of presented method.
ABSTRACT Background: Viral hepatitis places a heavy burden on the health care. Large number of patient with bleeding disorders has chronic hepatitis C infection, while few are chronic carriers of hepatitis B virus. Aims of study: evaluate the prevalence of HBV, HCV infection among patient with Von Willebrand disease and to find factors that associated with the chance of getting the infection.
The current study used extracts from the aloe vera (AV) plant and the hibiscus sabdariffa flower to make Ag-ZnO nanoparticles (NPs) and Ag-ZnO nanocomposites (NCs). Ag/ZnO NCs were compared to Ag NPs and ZnO NPs. They exhibited unique properties against bacteria and fungi that aren't present in either of the individual parts. The Ag-ZnO NCs from AV showed the best performance against E. coli, with an inhibition zone of up to 27 mm, compared to the other samples. The maximum absorbance peaks were observed at 431 nm and 410 nm for Ag NPs, at 374 nm and 377 nm for ZnO NPs and at 384 nm and 391 nm for Ag-ZnO NCs using AV leaf extract and hibiscus sabdariffa flower extract, respectively. Using field emission-scanning electron microscopes (FE-
... Show More