Attention-Deficit Hyperactivity Disorder (ADHD), a neurodevelopmental disorder affecting millions of people globally, is defined by symptoms of hyperactivity, impulsivity, and inattention that can significantly affect an individual's daily life. The diagnostic process for ADHD is complex, requiring a combination of clinical assessments and subjective evaluations. However, recent advances in artificial intelligence (AI) techniques have shown promise in predicting ADHD and providing an early diagnosis. In this study, we will explore the application of two AI techniques, K-Nearest Neighbors (KNN) and Adaptive Boosting (AdaBoost), in predicting ADHD using the Python programming language. The classification accuracies obtained were 96.5% and 93.47%, respectively, before applying balancing to the data. In addition, 98.59% and 97.18%, respectively, after applying the balancing technique The extreme gradient boosting (XGBoost) technique had been applied to selecting the important features and the Pearson correlation for finding the correlation between features.
The purpose of this paper is to identifying some of the physical, kinetic and electrical capabilities of the working muscles of patients with simple hemiplegic cerebral palsy, preparation of special exercises (rehabilitation and water) accompanied by symmetrical electrical stimulation in the rehabilitation of working muscles for patients with simple hemiplegic cerebral palsy, and identifying the effect of exercises, especially (rehabilitation and water), accompanied by symmetrical electrical stimulation, on some physical, kinetic and electrical capabilities in rehabilitating working muscles for patients with simple hemiplegic cerebral palsy. The researcher used the experimental approach with a one-group design with two pre and post-tests du
... Show MoreMultiplicative inverse in GF (2 m ) is a complex step in some important application such as Elliptic Curve Cryptography (ECC) and other applications. It operates by multiplying and squaring operation depending on the number of bits (m) in the field GF (2 m ). In this paper, a fast method is suggested to find inversion in GF (2 m ) using FPGA by reducing the number of multiplication operations in the Fermat's Theorem and transferring the squaring into a fast method to find exponentiation to (2 k ). In the proposed algorithm, the multiplicative inverse in GF(2 m ) is achieved by number of multiplications depending on log 2 (m) and each exponentiation is operates in a single clock cycle by generating a reduction matrix for high power of two ex
... Show MoreThis research aims to find out the phonemic, dialect and semantic ailments that were interrogated by the book of the parsing of thirty surahs of the Noble Qur’an by Ibn Khalawiyeh, by examining some phonemic phenomena of Qur’anic expressions and their explanatory relationships that resulted in their occurrence, such as substitution and compression, as the sounds in a word are affected by one another, especially during performance and composition. This influence and influence is the tendency of the human being to the law of ease, facilitation, and the reduction of muscular effort in speech often, all for the purpose of obtaining phonemic harmony for the compound letters; To facilitate pronunciation; And get rid of the muscular effort
... Show MoreABSTRACT Purpose: the aim of this in vitro study was to compare the marginal gap and internal fitness between single crowns and the crowns within three-unit bridges of zirconium fabricated by CAD-CAM system. Materials and methods: A standard model from ivoclar company was used as a pattern to simulate three-units bridge (upper first molar and upper first premolar) as abutments used to fabricate stone models, eight single crowns for premolar and eight of three units bridges. Crowns and bridges fabricated by CAD-CAM system were cemented on their respective stone models then sectioned at the mid-point buccolingaully and misiodistaly and examined under stereomicroscope. Result: the marginal gap in premolar crowns and premolar within bridge we
... Show MoreThis study rigorously investigates three 3d transition metal carbide (TMC) structures via LDA and GGA approximations. It examines cohesive energy (Ecoh), Vickers hardness (Hv), mechanical stability, and electronic properties. Notably, most 3d TMCs exhibit higher cohesive energy than nitrides, and rs-TiC demonstrates a Vickers hardness of 25.66 GPa, outperforming its nitride counterpart. The study employs theoretical calculations to expedite research, revealing mechanical stability in CrC and MnC (GGA) and CrC (LDA in cc structure), while all 3d TMCs in rs and seven in zb structures show stability. Charge transfer and bonding analysis reveal enhanced covalency along the series, influenced by the interplay between p orbitals of carbon and d o
... Show More