Attention-Deficit Hyperactivity Disorder (ADHD), a neurodevelopmental disorder affecting millions of people globally, is defined by symptoms of hyperactivity, impulsivity, and inattention that can significantly affect an individual's daily life. The diagnostic process for ADHD is complex, requiring a combination of clinical assessments and subjective evaluations. However, recent advances in artificial intelligence (AI) techniques have shown promise in predicting ADHD and providing an early diagnosis. In this study, we will explore the application of two AI techniques, K-Nearest Neighbors (KNN) and Adaptive Boosting (AdaBoost), in predicting ADHD using the Python programming language. The classification accuracies obtained were 96.5% and 93.47%, respectively, before applying balancing to the data. In addition, 98.59% and 97.18%, respectively, after applying the balancing technique The extreme gradient boosting (XGBoost) technique had been applied to selecting the important features and the Pearson correlation for finding the correlation between features.
This study deals with air pollution tolerance index (APTI) and anatomical variation in leaves of two species of terrestrial plants Ficus sp. and Conocarpus sp. that have bee commonly the separated along roadsides in many stations within Babylon province. APTI values of both species were less than 10 during study period which represented sensitivity of these plants to air pollution. There are Anatomical responses to pollution in the leaves of both studied species. Main adaptations included increased thickness of parenchyma cell walls with clear dark deposits in sections of Ficus sp. from sections of stations 2 and 4 which represent polluted stations. Conocarpus sp. main adaptation included stomata increased in density and decreased in size w
... Show MoreThe measurements and tests of the samples conducted in the laboratories of the College of Agriculture included isolating bio-fertilizers and testing the efficiency of isolates that fix atmospheric nitrogen and solubilize phosphorous compounds. Bacteria were isolated and identified from the rhizosphere soils of different plants collected from various agricultural areas. A total of 74 bacterial isolates were obtained based on the phenotypic characteristics of the developing colonies, as well as biochemical and microscopic traits. The results of isolation and identification showed that among the 74 bacterial isolates, there were 15 isolates of A. chroococcum, 13 of Az. lipoferum, 13 of B. megaterium, 10 of P. putida, 10 of Actinomycetes, and n
... Show MoreIn the present study, the growth and total lipid contents of two oleaginous fungal isolates Aspergillus terreus, Aspergillus fumigatus were compared in different nitrogen and organic carbon sources. Artificially the fungi were cultured on media consisting of various mono- or di- or polysaccharides and peptone or yeast extract as elementary sources for carbon and nitrogen, respectively. Media containing sucrose /yeast extract or glucose/ yeast extract were the most effective for lipid production from fungal, during two weeks incubation period, the highest biomass of dry weight was (19.6 , 18.8) g / L , (25.8 , 30.5) g /L and lipid yield (1, 0.97 )g/L, (0.65, 0.65) g/ L for two isolates Aspergillus terreus
... Show MoreObjective: Per-implantitis is one of the implant treatment complications. Dentists have failed to restore damaged periodontium by using conventional therapies. Tissue engineering (stem cells, scaffold and growth factors) aims to reconstruct natural tissues. The paper aimed to isolate both periodontal ligament stem cells (PDLSCs) and bone marrow mesenchymal stem cells (BMMSCs) and use them in a co-culture method to create three-layered cell sheets for reconstructing natural periodontal ligament (PDL) tissue. Materials and methods: BMMSCs were isolated from rabbit tibia and femur, and PDLSC culture was established from the lower right incisor. The cells were co-cultured to induce BMMSC differentiation into PDL cells. Cell morphology, stem cel
... Show MoreThe regular job of a reservoir engineer is to put a development plan to increase hydrocarbon production as possible and within economic and technical considerations. The development strategy for the giant reservoir is a complex and challenging task through the decision-making analysis process. Due to the limited surface water treatment facility, the reservoir management team focuses on minimizing water cut as low as possible by check the flow of formation and injected water movement through the Mishrif reservoir. In this research, a representative sector was used to make the review of water injection configuration, which is considered an efficient tool to make study in a particular area of the entire field when compared with the ful
... Show MoreCu-Al-Ni shape memory alloy specimens has been fabricated using powder metallurgy technique with tube furnace and vacuum sintering environment , three range of Nb powder weight percentage (0.3,0.6,0.9)% has been added. Micro hardness and sliding wear resist has been tested followed by X-ray diffraction, scanning electron microscope (SEM) and energy dispersive X-ray spectroscope (EDX) for micro structure observation. The experimental test for the samples has showed that the increase of Nb powder weight percentage in the master alloy has a significant effect on increasing the hardness and decreasing the wear resist therefore it will enhance the mechanical properties for this alloy.
In this paper Alx Ga1-x As:H films have been prepared by using new deposition method based on combination of flash- thermal evaporation technique. The thickness of our samples was about 300nm. The Al concentration was altered within the 0 x 40.
The results of X- ray diffraction analysis (XRD) confirmed the amorphous structure of all AlXGa1-x As:H films with x 40 and annealing temperature (Ta)<200°C. the temperature dependence of the DC conductivity GDC with various Al content has been measured for AlXGa1-x As:H films.
We have found that the thermal activation energy Ea depends of Al content and Ta, thus the value of Ea were approximately equal to half the value of optical gap.
Silver selenide telluride Semiconducting (Ag2Se0.8Te0.2) thin films were by thermal evaporation at RT with thickness350 nm at annealing temperatures (300, 348, 398, and 448) °K for 1 hour on glass substrates .using X-ray diffraction, the structural characteristics were calculated as a function of annealing temperatures with no preferential orientation along any plane. Atomic force microscopy (AFM) and X-ray techniques are used to analyze the Ag2SeTe thin films' physical makeup and properties. AFM techniques were used to analyze the surface morphology of the Ag2SeTe films, and the results showed that the values for average diameter, surface roughness, and grain size mutation increased with annealing temperature (116.36-171.02) nm The transm
... Show MoreIn this work; copper oxide films (CuO) were fabricated by PLD. The films were analyzed by UV-VIS absorption spectra and their thickness by using profilometer. Pulsed Nd:YAG laser was used for prepared CuO thin films under O2 gas environment with varying both pulse energy and annealing temperature. The optical properties of as-grown film such as optical transmittance spectrum, refractive index and energy gap has been measured experimentally and the effects of laser pulse energy and annealing temperature on it were studied. An inverse relationship between energy gap and both annealing temperature and pulse energy was observed.