Preferred Language
Articles
/
nBewlpIBVTCNdQwCm7hJ
Attention-Deficit Hyperactivity Disorder Prediction by Artificial Intelligence Techniques
...Show More Authors

Attention-Deficit Hyperactivity Disorder (ADHD), a neurodevelopmental disorder affecting millions of people globally, is defined by symptoms of hyperactivity, impulsivity, and inattention that can significantly affect an individual's daily life. The diagnostic process for ADHD is complex, requiring a combination of clinical assessments and subjective evaluations. However, recent advances in artificial intelligence (AI) techniques have shown promise in predicting ADHD and providing an early diagnosis. In this study, we will explore the application of two AI techniques, K-Nearest Neighbors (KNN) and Adaptive Boosting (AdaBoost), in predicting ADHD using the Python programming language. The classification accuracies obtained were 96.5% and 93.47%, respectively, before applying balancing to the data. In addition, 98.59% and 97.18%, respectively, after applying the balancing technique The extreme gradient boosting (XGBoost) technique had been applied to selecting the important features and the Pearson correlation for finding the correlation between features.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Feb 10 2025
Journal Name
Retos
The effect of the strategy to nominate ideas on divided and selective attention and perform some volleyball skills
...Show More Authors

Introduction: Attention is a fundamental cognitive function in sports, particularly in volleyball, where players must process multiple stimuli and make rapid decisions. Effective attentional control can enhance an athlete’s ability to react to dynamic game situations. The nomination of ideas strategy. Objective: This study aims to examine the effectiveness of the nomination of ideas strategy in enhancing divided and selective attention and its subsequent impact on volleyball skill performance. Methodology: A controlled experimental design was employed, involving volleyball players divided into an experimental group and a control group. The experimental group integrated the nomination of ideas strategy into their training sessions,

... Show More
View Publication
Scopus (3)
Scopus Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
The Effect Of Optimizers On The Generalizability Additive Neural Attention For Customer Support Twitter Dataset In Chatbot Application
...Show More Authors

When optimizing the performance of neural network-based chatbots, determining the optimizer is one of the most important aspects. Optimizers primarily control the adjustment of model parameters such as weight and bias to minimize a loss function during training. Adaptive optimizers such as ADAM have become a standard choice and are widely used for their invariant parameter updates' magnitudes concerning gradient scale variations, but often pose generalization problems. Alternatively, Stochastic Gradient Descent (SGD) with Momentum and the extension of ADAM, the ADAMW, offers several advantages. This study aims to compare and examine the effects of these optimizers on the chatbot CST dataset. The effectiveness of each optimizer is evaluat

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Sun Oct 10 2021
Journal Name
Journal Of Kirkuk University For Agricultural Sciences
Effect of Drought Stress (Water Deficit) and Plant Density on Productivity of Water and Zea mays (Baghdad Varieties) in Middle Region of Iraq
...Show More Authors

The objective of this study was to investigate the drought stress and plant density possibility on water productivity and grain yield of maize (Zea mays L.) (Planting Baghdad 3 synthetic varieties), Field experiment was conducted at Abu Ghraib Research Station (Baghdad) during spring and Autumn seasons of 2016 using a randomized complete block design arranged in split plot with three replications. Three irrigation treatment included: irrigation after depletion 50% of available water (T1), irrigation after depletion 75% of available water (T2) and irrigation after depletion 90% of available water (T3) in the main plots and three plant density which were: 1 seeds hill-1 (D1) giving a uniform plant density of 66666 plants ha-1 , 2 seeds hill1

... Show More
View Publication Preview PDF
Publication Date
Mon Jun 27 2022
Journal Name
Al-rafidain Journal Of Medical Sciences ( Issn: 2789-3219 )
Self-Reported Sleep Disorder, Anxiety and Depression in Iraqi Patients Post-Myocardial Infraction
...Show More Authors

Background: Myocardial infarction (MI) is distinguished by the necrosis of myocardial cells as a result of substantial and prolonged ischemia. Anxiety, problems sleeping, and feelings of depression are some of the most common psychosocial consequences of having a myocardial infarction. Aim: The purpose of this study is to evaluate the effects of post-myocardial infarction on patients' levels of anxiety, depression, and quality of sleep. Method: The collection of data from 94 individuals with MI was carried out according to a descriptive cross-sectional design. Sleep quality, depression, and anxiety were evaluated using standard questionnaires. Results: 69.1% of the participants reported having trouble getting quality sleep. The perc

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (2)
Scopus Crossref
Publication Date
Tue Jan 02 2018
Journal Name
Journal Of Educational And Psychological Researches
Self-image addiction (Salafi) and its relation to narcissistic personality disorder among students
...Show More Authors

Abstract The goal of current study was to identify the relationship between addiction of self-images (Selfie) and personality disorder of narcissus, and the difference of significance the relationship between addiction self-images (selfie) and personality disorder narcissus at students of Mustansiriya university, addiction self- images (selfie) defined: a photograph that one has taken of oneself, typically one taken with a smartphone or webcam and shared via social media, edit and down lowed to social networking sites, and over time, the replacement of normal life virtual world, which is accompanied by a lack of a sense of time, and the formation of repeated patterns increase the risk of social and personal problems. To achieve the goals

... Show More
View Publication Preview PDF
Publication Date
Mon Apr 10 2023
Journal Name
Journal Of Oral And Dental Research
Prevalence of Temporomandibular Joint Disorder among Dental Students of the University of Baghdad
...Show More Authors

View Publication
Crossref
Publication Date
Sun Mar 01 2020
Journal Name
Journal Of Engineering
Wellbore Breakouts Prediction from Different Rock Failure Criteria
...Show More Authors

One of the wellbore instability problems in vertical wells are breakouts in Zubair oilfield. Breakouts, if exceeds its critical limits will produce problems such as loss circulation which will add to the non-productive time (NPT) thus increasing loss in costs and in total revenues. In this paper, three of the available rock failure criteria (Mohr-Coulomb, Mogi-Coulomb and Modified-Lade) are used to study and predict the occurrence of the breakouts. It is found that there is an increase over the allowable breakout limit in breakout width in Tanuma shaly formation and it was predicted using Mohr-Coulomb criterion. An increase in the pore pressure was predicted in Tanuma shaly formation, thus; a new mud weight and casing pr

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Sat Mar 10 2012
Journal Name
الدنانير
Cryptography Using Artificial Neural Network
...Show More Authors

Neural cryptography deals with the problem of “key exchange” between two neural networks by using the mutual learning concept. The two networks exchange their outputs (in bits) and the key between two communicating parties ar eventually represented in the final learned weights, when the two networks are said to be synchronized. Security of neural synchronization is put at risk if an attacker is capable of synchronizing with any of the two parties during the training process.

Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
International Journal Of Agricultural And Statistical Sciences
DYNAMIC MODELING FOR DISCRETE SURVIVAL DATA BY USING ARTIFICIAL NEURAL NETWORKS AND ITERATIVELY WEIGHTED KALMAN FILTER SMOOTHING WITH COMPARISON
...Show More Authors

Survival analysis is widely applied in data describing for the life time of item until the occurrence of an event of interest such as death or another event of understudy . The purpose of this paper is to use the dynamic approach in the deep learning neural network method, where in this method a dynamic neural network that suits the nature of discrete survival data and time varying effect. This neural network is based on the Levenberg-Marquardt (L-M) algorithm in training, and the method is called Proposed Dynamic Artificial Neural Network (PDANN). Then a comparison was made with another method that depends entirely on the Bayes methodology is called Maximum A Posterior (MAP) method. This method was carried out using numerical algorithms re

... Show More
Preview PDF
Scopus (1)
Scopus
Publication Date
Thu Sep 01 2022
Journal Name
Computers And Electrical Engineering
Automatic illness prediction system through speech
...Show More Authors

View Publication
Scopus (12)
Crossref (5)
Scopus Clarivate Crossref