Concrete pavements are essential to modern infrastructure, but their low tensile and flexural strengths can cause cracking and shrinkage. This study evaluates fiber reinforcement with steel and carbon fibers in various combinations to improve rigid pavement performance. Six concrete mixes were tested: a control mix with no fiber, a mix with 1% steel fiber (SF1%), a mix with 1% carbon fiber (CF1%), and three hybrid mixes with 1% fiber content: 0.75% steel /0.25% carbon fiber (SF0.75CF0.25), 0.25% steel /0.75% carbon fiber (SF0.25CF0.75), and 0.5% steel /0.5% carbon fiber ((SF0.5CF0.5). Laboratory experiments including compressive, flexural, and splitting tensile strength tests were conducted at 7, 28, and 90 days, while Finite Element Analysis (FEA) using ABAQUS software was developed to examine pavement behavior under repeated loading. The results revealed that at 90 days, the SF1% mix exhibited a 9.1% improved compressive strength and CF1% mix a 7.3% improved strength over the control mix. The SF1% mix increased flexural strength by 72.5% and the CF1% mix by 48.6%. Additionally, splitting tensile strength increased by 70% for the SF1% and 45.5% for the CF1%. The hybrid mixes improved compressive strength by 7.6%-8.5%, flexural strength by 59.7%-70.2%, and splitting tensile strength by 56%-67.8%. The finite element modeling showed that the control mix was displaced 15 mm under repeated loading, while the SF1% reduced displacement by 35% and the hybrid mixes by 30%. These findings indicated that SF1% exhibited the best mechanical properties. However, fiber reinforcement, whether used single or in hybrid combinations, improves concrete pavement mechanical performance and loading behavior, offering a promising way to infrastructure durability and service life.
This research is presented experimental and numerical investigations of composite concrete-steel plate shear walls under axial loads to predicate the effect of both concrete compressive strength and aspect ratio of the wall on the axial capacity, lateral displacement and axial shortening of the walls. The experimental program includes casting and testing two groups of walls with various aspect ratios. The first group with aspect ratio H/L=1.667 and the second group with aspect ratio H/L=2. Each group consists of three composite concrete -steel plate wall with three targets of cube compressive strength of values 39, 54.75 and 63.3 MPa. The tests result obtained that the increase in concrete compressive strength results in increasing
... Show More— In light of the pandemic that has swept the world, the use of e-learning in educational institutions has become an urgent necessity for continued knowledge communication with students. Educational institutions can benefit from the free tools that Google provide and from these applications, Google classroom which is characterized by ease of use, but the efficiency of using Google classroom is affected by several variables not studied in previous studies Clearly, this study aimed to identify the use of Google classroom as a system for managing e-learning and the factors affecting the performance of students and lecturer. The data of this study were collected from 219 members of the faculty and students at the College of Administra
... Show MoreThe primary objective of this study was to identify the mechanisms for the development and propagation of longitudinal cracks that initiate at the surface of composite pavement. In this study the finite element program ANSYS version (5.4) was used and the model worked out using this program has the ability to analyze a composite pavement structure of different layer properties. Also, the aim of this study was modeling and analyzing of the composite pavement structure with the physical presence of crack induced in concrete underlying layer. The results obtained indicates that increasing the thickness of the asphalt layer tends to decrease the stress intensity factor, which may be attributed to the rapidly decrease of horizontal tensile st
... Show MoreIn the geotechnical engineering applications, precise understandings are yet to be established on the effects of a foundation stiffness on its bearing capacity and settlement. The modern foundation construction uses the new available construction materials that totally change the relative stiffness of the footing structures-soil interactions such as waste material and landfill area of more residential purposes. Conventional bearing capacity equations were dealt with common rigid footing and thus cannot be used for reduced foundation rigidity. Therefore, this study investigates the effects of foundation relative stiffness on its load-displacement behaviour and the soil deformation field using compression test of a strip smooth footings on su
... Show MoreIncreased attention to corporate governance with the increasing need for investors and other parties in the Iraqi market for securities of the information credible and confidence and greater transparency in the disclosure as well as the systems of governance lead to raise the value of the company and that by reducing the cost of capital and reduce the cost of financing, as well as that there are indications modern measurement can be adopted by the Iraqi market for securities for the purpose of evaluating the performance of listed companies and then raise their value.
The research problem is that there is no framework or structure of the legal and local rules for the application of corporate governance in Iraq obliges
... Show MorePhotonic Crystal Fiber Fabry–Perot Interferometers (FPI) based on Surface Plasmon Resonance (SPR) was investigated in this paper in order to detect changes in photonic crystal fiber sensitivity with increasing temperature. FPI is composed of a PCF (ESM-12) solid core spliced with a single-mode fiber (SMF) on one side and a 40nm thick gold Nano film on the other. In order to obtain the SPR curve, the end of PCF can be spliced with the side of SMF before covering the gold film on the PCF. SPR results are included in the suggested sensor, based on the conclusions of the investigations. Resolution (R) is 0.0871, Signal-to-Noise Ratio (SNR) is 0.1867, a figure of merit (FOM) is 0.0069, and sensitivity (S) is 1.1481 . This sensor proposed is s
... Show More