Preferred Language
Articles
/
moaPQYYBIXToZYAL7oBk
Preparation of nanostructured MnO2/carbon fiber composite electrode for removal of Cu2+ ions from aqueous solution by electrosorption process
...Show More Authors

The nanostructured Manganese dioxide/Carbon fiber (CF) composite electrode was prepared galvanostatically using a facile method of anodic electrodeposition by varying the reaction time and MnSO4 concentration of the electrochemical solution. The effects of these parameters on the structures and properties of the prepared electrode were evaluated. For determining the crystal characteristics, morphologies, and topographies of the deposited MnO2 films onto the surfaces of carbon fibers, the X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and atomic force microscopy (AFM) techniques were used, respectively. It found that the carbon fibers were coated with γ-MnO2 with a density that increased with increasing the deposition time and MnSO4 concentration, and vice versa for the roughness value (RMS). At conditions of 0.35 M of MnSO4 and 4h, the MnO2 nanoparticles tended to create a thin film with a uniform structure and high capacitance. The electrosorptive properties of the NMO/CF electrode were investigated by using it for removing Cu2+ ions from the aqueous solution and the influence of the applied voltage and ion strength on the Cu2+ removal efficiency was examined. The results indicate that at conditions of 2.3V applied voltage and 3 g/l of NaCl, the removal efficiency reached 98.46 % with an adsorption capacity of 218.8 mg/g.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Sep 30 2001
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Preparation and Agglomeration of Zeolite 5A from Locally Available Raw Materials
...Show More Authors

View Publication Preview PDF
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
Remediation of Groundwater Contaminated with Copper Ions by Waste Foundry Sand Permeable Barrier
...Show More Authors

The permeable reactive barrier (PRB) is one of the promising innovative in situ groundwater remediation technologies, in removing of copper from a contaminated shallow aquifer. The 1:1- mixture of waste foundry sand (WFS) and Kerbala’s sand (KS) was used for PRB. The WFS was represented the reactivity material while KS used to increase the permeability of PRB only. However, Fourier-transform infrared (FTIR) analysis proved that the carboxylic and alkyl halides groups are responsible for the sorption of copper onto WFS. Batch tests have been performed to characterize the equilibrium sorption properties of the (WFS+KS) mix in copper- containing aqueous
solutions. The sorption data for Cu+2 ions, obtained by batch experiments, have be

... Show More
View Publication Preview PDF
Crossref (15)
Crossref
Publication Date
Wed Mar 30 2022
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
The Conductivity of AC, Loss Tangent, and Relative Permittivity for Composites of PVC Paste/Graphite Electrode Waste
...Show More Authors

The behavior of AC conductivity (σac), loss tangent (tan δ), and relative permittivity (ε′) for composites of PVC-P/graphite electrode waste (GEW) was investigated, and a qualitative explanation was provided as a function of PVC-P weight fractions (0, 5, 10, 15, 20, and 25) wt. percent, temperature (30-90) °C, and frequency (100Hz-2MHz). The behaviors of the composites' ac. conductivity and impedance as a frequency function and temperature have been examined. The permittivity was shown to rise with increasing temperature (Tg). The relative permittivity increased as the GEW filler concentration increased and was highest in the low-frequency range; nevertheless decreased as the frequency increased.

View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Materials Today: Proceedings
Preparation, characterization and preliminary cytotoxic evaluation of 6-mercaptopurine-coated biotinylated carbon dots nanoparticles as a drug delivery system
...Show More Authors

View Publication
Scopus (21)
Crossref (15)
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Materials Today: Proceedings
Preparation, characterization and preliminary cytotoxic evaluation of 6-mercaptopurine-coated biotinylated carbon dots nanoparticles as a drug delivery system
...Show More Authors

View Publication
Scopus (21)
Crossref (15)
Scopus Crossref
Publication Date
Sun Jun 21 2020
Journal Name
Baghdad Science Journal
Synthesis of Carbon Nano Rods from Plastic Waste (PP) Using MgO AS A Catalyst
...Show More Authors

    In this research, CNRs have been synthesized using pyrolysis of plastic waste(pp) at 1000 ° C for one hour in a closed reactor made from stainless steel, using magnesium oxide (MgO) as a catalyst. The resultant carbon nano rods were purified and characterized using energy dispersive X-ray spectroscopy (EDX), X-ray powder diffraction (XRD). The surface characteristics of carbon rods were observed with the Field emission scanning electron microscopy (FESEM). The carbon was evenly spread and had the highest concentration from SEM-EDX characterization. The results of XRD and FESEM have shown that carbon Nano rods (CNRs) were present in Nano figures, synthesized at 1000 ° C and with pyrolysis temperature 400° C. One of t

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Molecular Liquids
Theoretical modeling study on preparation of nanosized drugs using supercritical-based processing: Determination of solubility of Chlorothiazide in supercritical carbon dioxide
...Show More Authors

View Publication
Scopus (11)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Wed Jul 02 2025
Journal Name
International Journal Of Biology And Chemistry
Preparation and Characterization of Nano-Iron Oxide by using Iraqi Orange Plant Extract and Testing for Adsorption Efficiency
...Show More Authors

Nanomaterials, including nanoparticles such as iron oxide nanoparticles, have received great attention from researchers due to their unique properties and applications. There are several diverse methods, including chemical, physical, and green biological methods, to prepare iron oxide nanoparticles. The green method was chosen because it is safer, purer, and less toxic compared to other methods. Therefore, the green method is a promising and environmentally friendly method in the near future. The aqueous extract of Iraqi orange leaves was used to prepare nano iron oxide, it was examined structurally and spectrally by several techniques (X-ray diffraction- XRD, Fourier transform infrared - FT-IR, field emission scanning electron micr

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Tue Aug 01 2023
Journal Name
Journal Of Photochemistry And Photobiology A: Chemistry
Silver oxide-zeolite for removal of an emerging contaminant by simultaneous adsorption-photocatalytic degradation under simulated sunlight irradiation
...Show More Authors

View Publication
Scopus (47)
Crossref (43)
Scopus Clarivate Crossref
Publication Date
Thu Jun 30 2016
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Adsorption of Fluoroquinolones Antibiotics on Activated Carbon by K2CO3 with Microwave Assisted Activation
...Show More Authors

The preparation of low cost activated carbon from date stones and microwave method by using K2CO3 as chemical activator were investigated.

   The prepared activated carbon was used to remove fluoroquinolones antibiotics from aqueous solution. The characterizations of the activated carbon is represented by surface area, pore volume, ash content, moisture content, bulk density, and iodine number. The adsorbed fluoroquinolones antibiotics are Ciprofloxcin (CIP), Norfloxcin (NOR) and Levofloxcin (LEVO). Different variables as pH, initial concentrations and contact time were studied to show the efficieny of prepared activated carbon. The experimental adsorption data were analyzed by Lungmuir, Freundlich

... Show More
View Publication Preview PDF