Preferred Language
Articles
/
moaPQYYBIXToZYAL7oBk
Preparation of nanostructured MnO2/carbon fiber composite electrode for removal of Cu2+ ions from aqueous solution by electrosorption process
...Show More Authors

The nanostructured Manganese dioxide/Carbon fiber (CF) composite electrode was prepared galvanostatically using a facile method of anodic electrodeposition by varying the reaction time and MnSO4 concentration of the electrochemical solution. The effects of these parameters on the structures and properties of the prepared electrode were evaluated. For determining the crystal characteristics, morphologies, and topographies of the deposited MnO2 films onto the surfaces of carbon fibers, the X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and atomic force microscopy (AFM) techniques were used, respectively. It found that the carbon fibers were coated with γ-MnO2 with a density that increased with increasing the deposition time and MnSO4 concentration, and vice versa for the roughness value (RMS). At conditions of 0.35 M of MnSO4 and 4h, the MnO2 nanoparticles tended to create a thin film with a uniform structure and high capacitance. The electrosorptive properties of the NMO/CF electrode were investigated by using it for removing Cu2+ ions from the aqueous solution and the influence of the applied voltage and ion strength on the Cu2+ removal efficiency was examined. The results indicate that at conditions of 2.3V applied voltage and 3 g/l of NaCl, the removal efficiency reached 98.46 % with an adsorption capacity of 218.8 mg/g.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
Aip Conference Proceedings
Recovery of methyl orange from aqueous solutions by bulk liquid membrane process facilitated with anionic carrier
...Show More Authors

Dyes are extensively water-soluble and toxic chemicals. The disposing of wastewater rich with such chemicals has severely impacted surface water quality (rivers and lakes). In the current study, an anionic dye, methyl orange, were extracted from wastewater fluids using bulk liquid membranes supplemented with an anionic carrier (Aliquat 336 (QCI)). Parameters including solvent type (carbon tetrachloride and chloroform), membrane stirring speed (100-250 rpm), mixing speed of both phases (50-100 rpm), The feed pH (2-12) and implemented temperature (35-60 °C) were thoroughly analyzed to determine the effect of such variables on extraction effectiveness. Furthermore, the effect of methyl orange (10-50 ppm) in the feed stage and NaOH (0

... Show More
View Publication
Scopus (8)
Crossref (1)
Scopus Crossref
Publication Date
Mon Aug 01 2022
Journal Name
Water, Air, & Soil Pollution
Cladophora Algae Modified with CuO Nanoparticles for Tetracycline Removal from Aqueous Solutions
...Show More Authors

Modified algae with nano copper oxide (CuO) were used as adsorption media to remove tetracycline (TEC) from aqueous solutions. Functional groups, morphology, structure, and percentages of surfactants before and after adsorption were characterised through Fourier-transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). Several variables, including pH, connection time, dosage, initial concentrations, and temperature, were controlled to obtain the optimum condition. Thermodynamic studies, adsorption isotherm, and kinetics models were examined to describe and recognise the type of interactions involved. Resultantly, the best operation conditions were at pH 7, contact time

... Show More
Crossref (33)
Crossref
Publication Date
Mon Aug 01 2022
Journal Name
Water, Air And Soil Pollution
Cladophora Algae Modified with CuO Nanoparticles for Tetracycline Removal from Aqueous Solutions
...Show More Authors

Modified algae with nano copper oxide (CuO) were used as adsorption media to remove tetracycline (TEC) from aqueous solutions. Functional groups, morphology, structure, and percentages of surfactants before and after adsorption were characterised through Fourier-transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). Several variables, including pH, connection time, dosage, initial concentrations, and temperature, were controlled to obtain the optimum condition. Thermodynamic studies, adsorption isotherm, and kinetics models were examined to describe and recognise the type of interactions involved. Resultantly, the best operation conditions were at pH 7, contact time

... Show More
Scopus (34)
Crossref (33)
Scopus Clarivate Crossref
Publication Date
Sun Mar 05 2017
Journal Name
Baghdad Science Journal
Using Phragmites australis(Iraqi plant) to remove the Lead (II) Ions form Aqueous solution.
...Show More Authors

Lead remediation was achieved using simple cost, effective and eco-friendly way from industrial wastewater. Phragmitesaustralis (P.a) (Iraqi plant), was used as anovel biomaterial to remove lead ions from synthesized waste water. Different parameters which affected on adsorption processes were investigated like adsorbent dose, pH, contact time, and adsorbent particle size, to reach the optimized conditions (maximum adsorption). The adsorption of Pb (?) on (P.a) involved fast and slow process as a mechanism steps according to obey two theoretical adsorption isotherms; Langmuir and Freundlich. The thermos dynamic adsorption parameters were evaluated also. The (?H) obtained positive value that meanes adsorption of lead ions was an endothermic

... Show More
Scopus (6)
Crossref (1)
Scopus Crossref
Publication Date
Tue Jul 01 2025
Journal Name
South African Journal Of Chemical Engineering
Electrocoagulation process for cobalt removal from industrial wastewater: Optimization and kinetic study
...Show More Authors

View Publication
Scopus (3)
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Desalination And Water Treatment
Combination of the artificial neural network and advection-dispersion equation for modeling of methylene blue dye removal from aqueous solution using olive stones as reactive bed
...Show More Authors

Scopus (15)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Fri Aug 06 2021
Journal Name
Desalination And Water Treatment
Removal of toxic dye (Rhodamine B) from aqueous solutions by natural smectite (SMC) and SMC-nanoTiO2
...Show More Authors

Titanium oxide nanoparticles-modified smectite (SMC-nTiO2) as a low-cost adsorbent was investigated for the removal of Rhodamine B (RhB) from aqueous solutions. The adsorbents (SMC and SMC-nTiO2) were characterized by scanning electron microscopy, Fourier transforms infrared spectroscopy, and energy-dispersive X-ray spectroscopy. The effects of various parameters like contact time, adsorbent weight, pH, and temperatures were examined. Three kinetic equations (pseudo-first-order (PFO), pseudo-second-order (PSO), and intra-particle diffusion) were used to evaluate the experimental kinetic of the data and the results showed that the adsorption process is in line with the PSO kinetic model. Adsorption equilibrium isotherms were modeled using La

... Show More
Publication Date
Mon Jul 10 2023
Journal Name
Journal Of Engineering
Removal of Hexavalent Chromium from Aqueous Solutions by Adsorption on Thermally Modified and Non-Modified Eggshells
...Show More Authors

Removal of heavy metals from waste water has received a great deal of attention. The compare Cr
(VI) adsorption characteristics removing from wastewater by using thermally modified and non-modified
eggshells were examined

View Publication Preview PDF
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Desalination And Water Treatment
Removal of toxic dye (Rhodamine B) from aqueous solutions by natural smectite (SMC) and SMC-nanoTiO2
...Show More Authors

View Publication Preview PDF
Scopus (6)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sun Dec 30 2018
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Biosorption of Methylene Blue from Aqueous Solution Using Mixed Algae
...Show More Authors

A mixture of algae biomass (Chrysophyta, Cyanophyta, and Chlorophyte) has been investigated for its possible adsorption removal of cationic dyes (methylene blue, MB). Effect of pH (1-8), biosorbent dosage (0.2-2 g/100ml), agitated speed (100-300), particle size (1304-89μm), temperature (20-40˚C), initial dye concentration (20-300 mg/L), and sorption–desorption were investigated to assess the algal-dye sorption mechanism. Different pre-treatments, alkali, protonation, and CaCl2 have been experienced in order to enhance the adsorption capacity as well as the stability of the algal biomass. Equilibrium isotherm data were analyzed using Langmuir, Freundlich, and Temkin models. The maximum dye-sorption capacity was 26.65 mg/g at pH= 5, 25

... Show More
View Publication Preview PDF
Crossref (19)
Crossref