Abstract
The common types of movement disorders are ; dystonia which is a syndrome of repetitive muscle contractions. While , Huntington disease is autosomal dominant progressive neurodegenerative disorder, which is characterized by involuntary movements (“chorea”).
Tetrabenazine therapy has been shown to effectively control this movements compared with placebo.
Design the proper dosing approach for patients treated with tetrabenazine with genotype polymorphisms and their hepatic effect on patients.
A prospective case controlled study was carried on 50 patients whom divided into 2 groups :first group involved 25 patients who had cho
... Show MoreAmidst the changes resulting from the subject matter of expression in art. The necessity of searching for the expressive features of thought that leaves different imprints with aesthetic features and values which called for re-modifying the expressive vision of contemporary drawings. Therefore, this research has been concerned with the study of (abstract expressive features in the drawings of (Serwan Baran) and (Eric Barto) - a comparative study), and the research includes four chapters. The first chapter is devoted to explaining the research problem, its importance, need, purpose, and limits, then determining the most important terms mentioned in it. Where the research problem dealt with the subject of abstract expressive feature
... Show MoreThis study aimed to improve the microencapsulation technique using a type coating the encapsulation Layer by Layer, which provide the best protection for life Lactobacillus casei in the extrusion method and use the microencapsulation of materials of the protein concentrated by protein 80% and the coating with alginate and chitosan have the results showed the variation in the difference of the binding process encapsulation yield among the types of coating through. by studying of these the effect o stability of the bio probiotic free cell and the three types coated towards three different concentrations from bile salts 0, 0.3, 0.5 and 0.7% when the periods of time different of zero and two and three hours at incubation the recorded
... Show MoreThis paper proposes improving the structure of the neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Two learning algorithms are used to adjust the parameters weight of the hybrid neural structure with its serial-parallel configuration; the first one is supervised learning algorithm based Back Propagation Algorithm (BPA) and the second one is an intelligent algorithm n
... Show MoreThis study employs evolutionary optimization and Artificial Intelligence algorithms to determine an individual’s age using a single-faced image as the basis for the identification process. Additionally, we used the WIKI dataset, widely considered the most comprehensive collection of facial images to date, including descriptions of age and gender attributes. However, estimating age from facial images is a recent topic of study, even though much research has been undertaken on establishing chronological age from facial photographs. Retrained artificial neural networks are used for classification after applying reprocessing and optimization techniques to achieve this goal. It is possible that the difficulty of determining age could be reduce
... Show MoreTV medium derives its formal shape from the technological development taking place in all scientific fields, which are creatively fused in the image of the television, which consists mainly of various visual levels and formations. But by the new decade of the second millennium, the television medium and mainly (drama) became looking for that paradigm shift in the aesthetic formal innovative fields and the advanced expressive performative fields that enable it to develop in treating what was impossible to visualize previously. In the meantime, presenting what is new and innovative in the field of unprecedented and even the familiar objective and intellectual treatments. Thus the TV medium has sought for work
... Show MoreThe complexity and variety of language included in policy and academic documents make the automatic classification of research papers based on the United Nations Sustainable Development Goals (SDGs) somewhat difficult. Using both pre-trained and contextual word embeddings to increase semantic understanding, this study presents a complete deep learning pipeline combining Bidirectional Long Short-Term Memory (BiLSTM) and Convolutional Neural Network (CNN) architectures which aims primarily to improve the comprehensibility and accuracy of SDG text classification, thereby enabling more effective policy monitoring and research evaluation. Successful document representation via Global Vector (GloVe), Bidirectional Encoder Representations from Tra
... Show More<span lang="EN-GB">Transmitting the highest capacity throughput over the longest possible distance without any regeneration stage is an important goal of any long-haul optical network system. Accordingly, Polarization-Multiplexed Quadrature Phase-Shift-Keying (PM-QPSK) was introduced lately to achieve high bit-rate with relatively high spectral efficiency. Unfortunately, the required broad bandwidth of PM-QPSK increases the linear and nonlinear impairments in the physical layer of the optical fiber network. Increased attention has been spent to compensate for these impairments in the last years. In this paper, Single Mode Fiber (SMF), single channel, PM-QPSK transceiver was simulated, with a mix of optical and electrical (Digi
... Show MoreImage compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye
... Show More