Determining the face of wearing a mask from not wearing a mask from visual data such as video and still, images have been a fascinating research topic in recent decades due to the spread of the Corona pandemic, which has changed the features of the entire world and forced people to wear a mask as a way to prevent the pandemic that has calmed the entire world, and it has played an important role. Intelligent development based on artificial intelligence and computers has a very important role in the issue of safety from the pandemic, as the Topic of face recognition and identifying people who wear the mask or not in the introduction and deep education was the most prominent in this topic. Using deep learning techniques and the YOLO (”You only look once”) neural network algorithm, which is an efficient real-time object identification algorithm, an intelligent system was developed in this thesis to distinguish which faces are wearing a mask and who is not wearing a wrong mask. The proposed system was developed based on data preparation, preprocessing, and adding a multi-layer neural network, followed by extracting the detection algorithm to improve the accuracy of the system. Two global data sets were used to train and test the proposed system and worked on it in three models, where the first contains the AIZOO data set, the second contains the MoLa RGB CovSurv data set, and the third model contains a combined data set for the two in order to provide cases that are difficult to identify and the accuracy results that were obtained. obtained from the merging datasets showed that the face mask (0.953) and the face recognition system were the most accurate in detecting them (0.916).
To determine the relationship between herpes simplex virus 1, 2 and neurological disorders, sixty samples from patients with neurological diseases were collected (40 patients with Multiple sclerosis and 20 patients with Parkinson’s disease) all of whom attended both the Neurological science Hospital as well as the Neuropathology consultation Department in Baghdad Hospital In Iraq. The samples were collected in the time frame between November 2017 and April 2018. The ages of the patients that were investigated were between (17-76) years and compared to a control group consisting of 25 samples collected from apparently healthy individuals. All the studied groups were subjected to the measurement of anti-HSV 1, 2 IgG antibodies by the means
... Show MoreObjective. Infection with Coxsackie virus. This virus that damages pancreatic cells, has long been linked to the onset of insulin-dependent diabetic mellitus (IDDM). Pro-inflammatory cytokines can be produced as a result of this illness. Tumor necrosis factor-a is one of these pro-inflammatory cytokines. Materials and Methods. Blood sample were collected from 180 Iraqi participants. Ninety of them is type 1 diabetic patients and other 90 is healthy control .both groups were tested for the incidence of Coxsackie virus B IgG. So the patients groups is divided to two groups according to sero positivity of CVB-IgG .all 180 patients tested to measure of level of TNF-α. Results. The Results showed increasing in levels of TNF-α in CBV po
... Show MoreObjective: Evaluation of women's knowledge about risk factors and early detection of breast cancer at
Ibn Rushd college of education in Baghdad University.
Methodology: The study sample included (184) women in the Ibn Rushd College / University of
Baghdad, whose age ranged between (17-58) years. Data were collected through a structured
questionnaire prepared by the National Cancer Research Center which were answered during a scientific
symposium about breast cancer. The score was calculated by correcting the results of the answer, giving
one score for each correct answer and then estimating the level of knowledge and inputting all data in a
statistical program.
Results: The results showed limited level of women's
In general, path-planning problem is one of most important task in the field of robotics. This paper describes the path-planning problem of mobile robot based on various metaheuristic algorithms. The suitable collision free path of a robot must satisfies certain optimization criteria such as feasibility, minimum path length, safety and smoothness and so on. In this research, various three approaches namely, PSO, Firefly and proposed hybrid FFCPSO are applied in static, known environment to solve the global path-planning problem in three cases. The first case used single mobile robot, the second case used three independent mobile robots and the third case applied three follow up mobile robot. Simulation results, whi
... Show MoreIncorporating waste byproducts into concrete is an innovative and promising way to minimize the environmental impact of waste material while maintaining and/or improving concrete’s mechanical characteristics and strength. The proper application of sawdust as a pozzolan in the building industry remains a significant challenge. Consequently, this study conducted an experimental evaluation of sawdust as a fill material. In particular, sawdust as a fine aggregate in concrete offers a realistic structural and economical possibility for the construction of lightweight structural systems. Failure under four-point loads was investigated for six concrete-filled steel tube (CFST) specimens. The results indicated that recycled lightweight co
... Show More