The estimation of the initial oil in place is a crucial topic in the period of exploration, appraisal, and development of the reservoir. In the current work, two conventional methods were used to determine the Initial Oil in Place. These two methods are a volumetric method and a reservoir simulation method. Moreover, each method requires a type of data whereet al the volumetric method depends on geological, core, well log and petrophysical properties data while the reservoir simulation method also needs capillary pressure versus water saturation, fluid production and static pressure data for all active wells at the Mishrif reservoir. The petrophysical properties for the studied reservoir is calculated using neural network technique from 13 cored and logged wells. The results showed that the reservoir simulation method gave a value of Initial Oil in Place that agrees and close to the value of Initial Oil in Place obtained from the volumetric method with a percentage different around 2%. However, the estimation of Initial Oil in Place by reservoir simulation method offered accurate results during good history matching with observed data as well as making appropriate adjusting for Pc vs. Sw values for the whole reservoir from October 1976 until December2020. MB21 unit own most Initial Oil in Place equal to 525*106 SM3 while MB12 has lowest IOIP equal to 2*106 SM3. Finally, the calculation of Initial Oil in Place by both volumetric and simulation methods presented good results while comparing with previous study at 2013 with discovered different around 1.5% and 0.6% respectively.
Many numerical approaches have been suggested to solve nonlinear problems. In this paper, we suggest a new two-step iterative method for solving nonlinear equations. This iterative method has cubic convergence. Several numerical examples to illustrate the efficiency of this method by Comparison with other similar methods is given.
In this paper, we consider a new approach to solve type of partial differential equation by using coupled Laplace transformation with decomposition method to find the exact solution for non–linear non–homogenous equation with initial conditions. The reliability for suggested approach illustrated by solving model equations such as second order linear and nonlinear Klein–Gordon equation. The application results show the efficiency and ability for suggested approach.
The Korteweg-de Vries equation plays an important role in fluid physics and applied mathematics. This equation is a fundamental within study of shallow water waves. Since these equations arise in many applications and physical phenomena, it is officially showed that this equation has solitary waves as solutions, The Korteweg-de Vries equation is utilized to characterize a long waves travelling in channels. The goal of this paper is to construct the new effective frequent relation to resolve these problems where the semi analytic iterative technique presents new enforcement to solve Korteweg-de Vries equations. The distinctive feature of this method is, it can be utilized to get approximate solutions for travelling waves of
... Show MoreThe main object of this study is to solve a system of nonlinear ordinary differential equations (ODE) of the first order governing the epidemic model using numerical methods. The application under study is a mathematical epidemic model which is the influenza model at Australia in 1919. Runge-kutta methods of order 4 and of order 45 for solving this initial value problem(IVP) problem have been used. Finally, the results obtained have been discussed tabularly and graphically.
Zeolite Y nanoparticles were synthesized by sol - gel method. Dffirent samples using two silica sources were prepared.
Sodium metasilicate (Na2SiO3) (48% silica) and silicic acid silica (H2SiO3) (75% silica) were employed as silica
source and aluminum nitrate (Al(NO3)3.9H2O) was the aluminum source with tetrapropylammonium hydroxide
(TPAOH) as templating agent.
The synihesized-samples were characterized by X-ray diffraction, showed the requirement of diffirent aging time for
complete crystallization to be achieved. Transmission Electronic Microscope (TEM) images, showed the particles were
in the same range of 30 - 75 nm. FT-IR spectroscory, showed the synthesized samples having the zeolite Y crystal
properties. The i
يهدف البحث الى تقديم استراتيجية مقترحة لشركة نفط الشمال ، وأخذت الاستراتيجية المقترحة بنظر الاعتبار الظروف البيئية المحيطة واعتمدت في صياغتها على اسس وخطوات علمية تتسم بالشمولية والواقعية ، اذ انها غطت الانشطة الرئيسية في الشركة (نشاط الانتاج والاستكشاف , نشاط التكرير والتصفية , التصدير ونقل النفط , نشاط البحث والتطوير , النشاط المالي , تقنية المعلومات , الموارد البشرية ) وقد اعتمد نموذج (David) في التحليل البيئي
... Show MoreThe research aims to present a proposed strategy for the North Oil Company, and the proposed strategy took into account the surrounding environmental conditions and adopted in its formulation on the basis and scientific steps that are comprehensive and realistic, as it covered the main activities of the company (production and exploration activities, refining and refining activities, export and transport of oil, research and development activity, financial activity, information technology, human resources) and the (David) model has been adopted in the environmental analysis of the factors that have been diagnosed according to a
... Show MoreA paraffin wax and copper foam matrix were used as a thermal energy storage material in the double passes air solar chimney (SC) collector to get ventilation effect through daytime and after sunset. Air SC collector was installed in the south wall of an insulated test room and tested with different working angles (30o, 45o and 60o). Different SC types were used; single pass, double passes flat plate collector and double pass thermal energy storage box collector (TESB). A computational model based on the finite volume method for transient tw dimensional domains was carried out to describe the heat transfer and storage in the thermal energy storage material of collector. Also, equivalent specific heat metho
... Show MoreExcessive torque and drag can be critical limitation during drilling highly deviated oil wells. Using the modeling is regarded as an invaluable process to assist in well planning and to predict and prevent drilling problems. Identify which problems lead to excessive torque and drag to prevent cost losses and equipment damage. Proper modeling data is highly important for knowing and prediction hole problems may occur due to torque and drag and select the best method to avoid these problems related to well bore and drill string. In this study, Torque and drag well plan program from landmark worldwide programming group (Halliburton Company) used to identify hole problems.one deviated well in Zubair oil fields named, ZB-250 selected for anal
... Show More
