We have investigated the photoemission and electronic properties at the PTCDI molecules interface on TiO2 and ZnO semiconductor by means of charge transition. A simple donor acceptor scenario used to calculate the rate for electron transfer of delocalized electronics in a non-degenerately TiO2 and ZnO electrodes to redox localized acceptors in an electrolytic. The dependent of electronic transition rate on the potential at contact of PTCDI with TiO2 and ZnO semiconductors, it has been discussion using TiO2 and ZnO electrodes in aqueous solutions. The charge transfer rate is determining by the overlapping electronic coupling to the TiO2 and ZnO electrodes, the transition energy, potential and polarity media within the theoretical scenario of the electronic transition, it can be expected the transition rate at electrodes interface with PTCDI dye using computer program.
In the present study, multi-walled carbon nanotubes (MWCNTs) with outside diameters of< 8 nm and 20−30 nm were covalently functionalized with β-Alanine using a novel synthesis procedure. The functionalization process was proved successful using Raman spectroscopy, FTIR, and TEM. Utilizing the two-step method with ultrasonication, the MWCNTs treated with β-Alanine (Ala-MWCNTs) with weight concentrations of 0.025%, 0.05%, 0.075%, and 0.1% were dispersed in distilled water to prepare water-based nanofluids. The aqueous colloidal dispersions of pristine MWCNTs were unstable. While for Ala-MWCNTs and after> 50 days from preparation, higher colloidal stability was obtained up to relative concentration of 0.955 and 0.939 for the 0.075-wt% samp
... Show MoreChanges in mechanical properties of material as a result of service in different conditions can be provided by mechanical testing to assist the estimation of current internal situation of these materials, or the degree of deterioration may exist in furnaces serviced at high temperature and exceed their design life. Because of the rarity works on austenitic stainless steel material type AISI 321H, in this work, ultimate tensile strength, yield strength, elongation, hardness, and absorbed energy by impact are evaluated based on experimental data obtained from mechanical testing. Samples of tubes are extracted from furnace belong to hydrotreaterunit, also samples from un-used tube material are used to make comparisons between these properti
... Show MoreThis study focuses on synthesizing Niobium pentoxide (Nb2O5) thin films on silicon wafers and quartz substrates using DC reactive magnetron sputtering for NO2 gas sensors. The films undergo annealing in ambient air at 800 °C for 1 hr. Various characterization techniques, including X-ray diffraction (XRD), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), Hall effect measurements, and sensitivity measurements, are employed to evaluate the structural, morphological, electrical, and sensing properties of the Nb2O5 thin films. XRD analysis confirms the polycrystalline nature and hexagonal crystal structure of Nb2O5. The optical band gap val
... Show MoreBackground: Colonization of soft denture liners by Candida albicans and other microorganisms continued to be a serious problem. The aim of this study was to evaluate the effect of incorporating silver nanoparticles into heat cured acrylic-based soft denture liner on the antifungal activity, and on water sorption, solubility, shear bond strength and color change of the soft lining material. Furthermore, evaluating the amount of silver released. Materials and methods: Silver nanoparticles were incorporated into soft denture liner in different percentages (0.05%, 0.1% and 0.2% by weight). Four hundred and twenty specimens were prepared and divided into five groups according to the test to be performed. The antifungal activity of the soft liner
... Show MoreGlass Ionomer Cement (GIC) is one of the important dental temporary filing materials. The aim of this study is to evaluate the effect of adding 3, 5 and 7 wt. % of TiO2 microparticles to conventional GIC powder (Riva Self Cure) on mechanical properties and its effect on absorption and solubility processes. TiO2 particles additives improved compressive strength and biaxial flexural strength, where the compressive strength increased with increasing in the added ratio, while the highest value of the biaxial flexural strength was at 3 wt.%. The addition of TiO2 particles improved the surface Vickers microhardness values, with highest value at 5 wt. %. On other hand TiO2 addition im
... Show MoreABSTRACTObjective: The objective of this study is to develop a controlled release matrix tablet of candesartan cilexetil to reduce the frequency of administration,enhance bioavailability and improve patient compliance; a once daily sustained release formulation of candesartan cilexetil is desirable.Methods: The prepared tablets from F1 to F24 were evaluated with different evaluation parameters like weight variation, drug content, friability,hardness, thickness and swelling ability. In vitro release for all formulas were studied depends on the type and amount of each polymer, i.e. (16 mg,32 mg and 48 mg) respectively beside to the combination effect of polymers on the release of the drug from the tablet.Results: In vitro release show
... Show MoreThis study focuses on synthesizing Niobium pentoxide (Nb2O5) thin films on silicon wafers and quartz substrates using DC reactive magnetron sputtering for NO2 gas sensors. The films undergo annealing in ambient air at 800 °C for 1 hr. Various characterization techniques, including X-ray diffraction (XRD), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), Hall effect measurements, and sensitivity measurements, are employed to evaluate the structural, morphological, electrical, and sensing properties of the Nb2O5 thin films. XRD analysis confirms the polycrystalline nature and hexagonal crystal structure of Nb2O5. The optical band gap values of the Nb2O5 thin films demonstrate a decrease from 4.74 to 3.73 eV
... Show More