Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven classifiers. A hybrid supervised learning system that takes advantage of rich intermediate features extracted from deep learning compared to traditional feature extraction to boost classification accuracy and parameters is suggested. They provide the same set of characteristics to discover and verify which classifier yields the best classification with our new proposed approach of “hybrid learning.” To achieve this, the performance of classifiers was assessed depending on a genuine dataset that was taken by our camera system. The simulation results show that the support vector machine (SVM) has a mean square error of 0.011, a total accuracy ratio of 98.80%, and an F1 score of 0.99. Moreover, the results show that the LR classifier has a mean square error of 0.035 and a total ratio of 96.42%, and an F1 score of 0.96 comes in the second place. The ANN classifier has a mean square error of 0.047 and a total ratio of 95.23%, and an F1 score of 0.94 comes in the third place. Furthermore, RF, WKNN, DT, and NB with a mean square error and an F1 score advance to the next stage with accuracy ratios of 91.66%, 90.47%, 79.76%, and 75%, respectively. As a result, the main contribution is the enhancement of the classification performance parameters with images of varying brightness and clarity using the proposed hybrid learning approach.
Magnetic Resonance Imaging (MRI) uses magnetization and radio waves, rather than x-rays to make very detailed, cross- sectional pictures of the brain. In this work we are going to explain some procedures belongs contrast and brightness improvement which is very important in the improvement the image quality such as the manipulation with the image histogram. Its has been explained in this worked the histogram shrink i.e. reducing the size of the gray level gives a dim low contrast picture is produced, where, the histogram stretching of the gray level was distributed on a wide scale but there is no increase in the number of pixels in the bright region. The histogram equalization has also been discuss together with its effects of the improveme
... Show MoreThe preparation of the phenanthridine derivative compound was achieved by adopting an efficient one-pot synthetic approach. The condensation of an ethanolic mixture of benzaldehyde, cyclohexanone and ammonium acetate in a 2:1:1 mole ratio resulted in the formation of the title compound. Analytical and spectroscopic techniques were used to confirm the nature of the new compound. A mechanism for the formation of the phenanthridine moiety that is based on three steps has been suggested
Modern automation robotics have replaced many human workers in industrial factories around the globe. The robotic arms are used for several manufacturing applications, and their responses required optimal control. In this paper, a robust approach of optimal position control for a DC motor in the robotic arm system is proposed. The general component of the automation system is first introduced. The mathematical model and the corresponding transfer functions of a DC motor in the robotic arm system are presented. The investigations of using DC motor in the robotic arm system without controller lead to poor system performance. Therefore, the analysis and design of a Proportional plus Integration plus Divertive (PID) controller is illustrated.
... Show MoreThe gas material balance equation (MBE) has been widely used as a practical as well as a simple tool to estimate gas initially in place (GIIP), and the ultimate recovery (UR) factor of a gas reservoir. The classical form of the gas material balance equation is developed by considering the reservoir as a simple tank model, in which the relationship between the pressure/gas compressibility factor (p/z) and cumulative gas production (Gp) is generally appeared to be linear. This linear plot is usually extrapolated to estimate GIIP at zero pressure, and UR factor for a given abandonment pressure. While this assumption is reasonable to some extent for conventional reservoirs, this may incur
Abstract
The research aimed to prepare an audit program focusing on the activities of municipal institutions related to the environmental dimension as one of the dimensions of sustainable development, and applying the program for the purpose of preparing an oversight report related to assessing the impact of the activities of municipal institutions on the environmental reality as the main channel through which municipal institutions contribute to achieving the part related to it. Among the requirements of sustainable development, the proposed program was prepared and applied to the institutions affiliated to the Directorate of Mu
... Show MoreThe rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient com
... Show MoreThe dramatic personality represents the most important nerve in the cinematographic discourse due to what it represents of a permanent presence in various types of TV and cinematic stories. That is what makes the cinematographic discourse always seek to introduce the human personality in multiple methods. The psychopathic personality is a type of the personalities that got distinguished presence in the TV and cinematic productions. This is what drew the researcher's attention for the topic of the research for which she used title: structural features of the psychopathic personality in the cinematographic discourse.
The theoretical framework included the research problem which is determined by the following question: what are the stru
This paper examines some syntactic features of English legal texts, and the changes that may be reflected on these features when they are translated into Arabic. For example, passivization, nominalization, complex sentences and modality. The researcher tries to demonstrate why it is difficult to suggest a specific translation of each syntactic feature, especially the modal verbs. The researcher also attempts to provide translations for some legal sentences written in some charters and international organizations. The descriptive methodology is used to identify the characteristics of these syntactic features in order to provide a proper translation of each legal sentence. It has been concluded that the translator has to be aware of the preci
... Show More