Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven classifiers. A hybrid supervised learning system that takes advantage of rich intermediate features extracted from deep learning compared to traditional feature extraction to boost classification accuracy and parameters is suggested. They provide the same set of characteristics to discover and verify which classifier yields the best classification with our new proposed approach of “hybrid learning.” To achieve this, the performance of classifiers was assessed depending on a genuine dataset that was taken by our camera system. The simulation results show that the support vector machine (SVM) has a mean square error of 0.011, a total accuracy ratio of 98.80%, and an F1 score of 0.99. Moreover, the results show that the LR classifier has a mean square error of 0.035 and a total ratio of 96.42%, and an F1 score of 0.96 comes in the second place. The ANN classifier has a mean square error of 0.047 and a total ratio of 95.23%, and an F1 score of 0.94 comes in the third place. Furthermore, RF, WKNN, DT, and NB with a mean square error and an F1 score advance to the next stage with accuracy ratios of 91.66%, 90.47%, 79.76%, and 75%, respectively. As a result, the main contribution is the enhancement of the classification performance parameters with images of varying brightness and clarity using the proposed hybrid learning approach.
Cox regression model have been used to estimate proportion hazard model for patients with hepatitis disease recorded in Gastrointestinal and Hepatic diseases Hospital in Iraq for (2002 -2005). Data consists of (age, gender, survival time terminal stat). A Kaplan-Meier method has been applied to estimate survival function and hazerd function.
This current study aims to:
1st: The recognizing of Alexithymia level for 6th grade students (Study Specimen) through the next Zero Hypothesis:1. There are no statistically significant differences at (0.05) level between the arithmetic mean of the specimen degrees as a whole and the central assumption for the scale of the lack in emotions expression
2. There are no statistically significant differences at (0.05) level between the arithmetic mean of the male students specimen and the arithmetic meanc of the female students specimen for the scale of Alexithymia.
2nd: ldentification the level of the emotional intelligence among 6th grade students (Study Specimen) through the next Zero Hypothesis:
1) There are no statistically si
Lacing reinforcement plays a critical role in the design and performance of reinforced concrete (RC) slabs by distributing the applied loads more evenly across the slab, ensuring that no specific area of the slab is overloaded. In this study, nine slabs, divided into three groups according to the investigated parameters, were meticulously designed and evaluated to study the interplay between the lacing reinforcement and other key parameters. Each slab was crafted for simple support and was subjected to both static and repeated two-point load tests. The lacing reinforcement had an angle of 45° with various tension and lacing steel. The repeated-tested specimens with lacing reinforcement experienced smaller ductility than those of s
... Show MoreLacing reinforcement plays a critical role in the design and performance of reinforced concrete (RC) slabs by distributing the applied loads more evenly across the slab, ensuring that no specific area of the slab is overloaded. In this study, nine slabs, divided into three groups according to the investigated parameters, were meticulously designed and evaluated to study the interplay between the lacing reinforcement and other key parameters. Each slab was crafted for simple support and was subjected to both static and repeated two-point load tests. The lacing reinforcement had an angle of 45° with various tension and lacing steel. The repeated-tested specimens with lacing reinforcement experienced smaller ductility than those of s
... Show MoreIndividual cannot live alone due to to his need for others to facilitate His supplies for living, thus social affiliation is considered one of the most important psychological, social needs in individuals life through his willing to affiliate to others whether they were friends ,family, colleague , or even home to reach some degree of psychological stability.
Affiliation is a tool to search for Satiate through living with group from the same type or comply for group or to be compatible with them or even to be adherent and accept what the group agreed about of criterion.
 
... Show MoreThe coordination ability of the azo-Schiff base 2-[1,5-Dimethyl-3-[2-(5-methyl-1H-indol-3-yl)-ethyl imino]-2-phenyl-2,3-dihydro-1H-pyrazol-4-ylazo]-5- hydroxy-benzoic acid has been proven in complexation reactions with Co(II), Ni(II), Cu(II), Pd(II) and Pt(II) ions. The free ligand (LH) and its complexes were characterized using elemental analysis, determination of metal concentration, magnetic susceptibility, molar conductivity, FTIR, Uv-Vis, (1H, 13C) NMR spectra, mass spectra and thermal analysis (TGA). The results confirmed the coordination of the ligand through the nitrogen of the azomethine, Azo group (Azo) and the carboxylate ion with the metal ions. The activation thermodynamic parameters, such as ΔE*, ΔH*, ΔS*, ΔG*and K are cal
... Show More
