Preferred Language
Articles
/
mRYvjIcBVTCNdQwCw1Vt
A New Proposed Hybrid Learning Approach with Features for Extraction of Image Classification
...Show More Authors

Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven classifiers. A hybrid supervised learning system that takes advantage of rich intermediate features extracted from deep learning compared to traditional feature extraction to boost classification accuracy and parameters is suggested. They provide the same set of characteristics to discover and verify which classifier yields the best classification with our new proposed approach of “hybrid learning.” To achieve this, the performance of classifiers was assessed depending on a genuine dataset that was taken by our camera system. The simulation results show that the support vector machine (SVM) has a mean square error of 0.011, a total accuracy ratio of 98.80%, and an F1 score of 0.99. Moreover, the results show that the LR classifier has a mean square error of 0.035 and a total ratio of 96.42%, and an F1 score of 0.96 comes in the second place. The ANN classifier has a mean square error of 0.047 and a total ratio of 95.23%, and an F1 score of 0.94 comes in the third place. Furthermore, RF, WKNN, DT, and NB with a mean square error and an F1 score advance to the next stage with accuracy ratios of 91.66%, 90.47%, 79.76%, and 75%, respectively. As a result, the main contribution is the enhancement of the classification performance parameters with images of varying brightness and clarity using the proposed hybrid learning approach.

Scopus Clarivate Crossref
View Publication
Publication Date
Sat Jun 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
Comparison between some well- Known methods to estimate the parameter of the proposed method of measurement and the reliability of the distribution function with two parameters Rally by simulation
...Show More Authors

 

 

Abstract

            Rayleigh distribution is one of the important distributions used for analysis life time data, and has applications in reliability study and physical interpretations. This paper introduces four different methods to estimate the scale parameter, and also estimate reliability function; these methods are Maximum Likelihood, and Bayes and Modified Bayes, and Minimax estimator under squared error loss function, for the scale and reliability function of the generalized Rayleigh distribution are obtained. The comparison is done through simulation procedure, t

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Mar 30 2012
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Extraction of Pelletierine from Punica granatum L.by Liquid Membrane Technique and Modelling
...Show More Authors

This work was conducted to study the extraction of pelletierine sulphate from Punica granatum L. roots by liquid membrane techniques. Pelletierine sulphate is used widely in medicine. The general behavior of extraction process indicates that pelletierine conversion increased with increasing the number of stages and the discs rotation speed but high rotation speed was not favored because of the increased risk of droplet formation during the operation. The pH of feed and acceptor solution was also important. The results exhibit that the highest pelletierine conversion was obtained when using two stages,(10 rpm) discs speed of stainless steel discs,(pH= 9.5) of feed solution and (pH= 2) of acceptor solution in n-decane. Assuming the existence

... Show More
Publication Date
Thu Nov 01 2018
Journal Name
Environmental Technology & Innovation
Extraction of glycyrrhizin from licorice (Glycyrrhiza Glabra L.) by bulk liquid membrane
...Show More Authors

In this work, the extraction of glycyrrhizin from Licorice using bulk liquid membrane technique was developed and optimized. The effect of various parameters such as pH of stripping and donor solutions, temperature, stirring speed and kinetic parameters were investigated. Moreover, to study the impact of the polarity of membrane solvent, two types of extraction solvents were used as a membrane solvent: n-Hexane was used as a non-polar solvent and 1-Hexanol was as a polar solvent. The optimum extraction condition was found (95.53%) using 1-Hexanol, rotating speed was 400 rpm, and pH of the acceptor and donor solutions were 8 and 5.5, respectively. The reaction kinetics constants ( and ) for the transport of glycyrrhizin from the donor pha

... Show More
View Publication
Scopus (18)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Wed Sep 30 2015
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Extraction of Essential Oils from Citrus By-Products Using Microwave Steam Distillation
...Show More Authors

The main objectives of this research is to extract essential oil from: orange ( citrus sinensis), lemon( citrus limon) and mandarin( citrus reticulata) peels by two methods: steam distillation (SD) and microwave assisted steam distillation (MASD), study the effect of extraction conditions (weight of the sample, extraction time, and microwave power, citrus peel type) on oil yield and compare the results of the two methods, the resulting essential oil was analyzed by Gas Chromatography (GC).

   Essential oils are highly concentrated substances used for their flavor and therapeutic or odoriferous properties, in a wide selection of products such as foods, medicines and cosmetics. Extracti

... Show More
View Publication Preview PDF
Publication Date
Fri Mar 30 2012
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Extraction of Pelletierine from Punica granatum L.by Liquid Membrane Technique and Modelling
...Show More Authors

This work was conducted to study the extraction of pelletierine sulphate from Punica granatum L. roots by liquid membrane techniques. Pelletierine sulphate is used widely in medicine. The general behavior of extraction process indicates that pelletierine conversion increased with increasing the number of stages and the discs rotation speed but high rotation speed was not favored because of the increased risk of droplet formation during the operation. The pH of feed and acceptor solution was also important. The results exhibit that the highest pelletierine conversion was obtained when using two stages, (10 rpm) discs speed of stainless steel discs, (pH=9.5) of feed solution and (pH=2) of acceptor solution in n-decane. Assuming the existen

... Show More
View Publication Preview PDF
Publication Date
Fri Sep 26 2025
Journal Name
Applied Data Science And Analysis
Deep Learning in Genomic Sequencing: Advanced Algorithms for HIV/AIDS Strain Prediction and Drug Resistance Analysis
...Show More Authors

Genome sequencing has significantly improved the understanding of HIV and AIDS through accurate data on viral transmission, evolution and anti-therapeutic processes. Deep learning algorithms, like the Fined-Tuned Gradient Descent Fused Multi-Kernal Convolutional Neural Network (FGD-MCNN), can predict strain behaviour and evaluate complex patterns. Using genotypic-phenotypic data obtained from the Stanford University HIV Drug Resistance Database, the FGD-MCNN created three files covering various antiretroviral medications for HIV predictions and drug resistance. These files include PIs, NRTIs and NNRTIs. FGD-MCNNs classify genetic sequences as vulnerable or resistant to antiretroviral drugs by analyzing chromosomal information and id

... Show More
View Publication
Crossref
Publication Date
Mon Jun 30 2025
Journal Name
Iraqi Journal Of Science
New Weighted Synthetic Oversampling Method for Improving Credit Card Fraud Detection
...Show More Authors

The use of credit cards for online purchases has significantly increased in recent years, but it has also led to an increase in fraudulent activities that cost businesses and consumers billions of dollars annually. Detecting fraudulent transactions is crucial for protecting customers and maintaining the financial system's integrity. However, the number of fraudulent transactions is less than legitimate transactions, which can result in a data imbalance that affects classification performance and bias in the model evaluation results. This paper focuses on processing imbalanced data by proposing a new weighted oversampling method, wADASMO, to generate minor-class data (i.e., fraudulent transactions). The proposed method is based on th

... Show More
View Publication
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Ieee Transactions On Robotics
Lidar-Level Localization With Radar? The CFEAR Approach to Accurate, Fast, and Robust Large-Scale Radar Odometry in Diverse Environments
...Show More Authors

View Publication
Scopus (39)
Crossref (37)
Scopus Clarivate Crossref
Publication Date
Sat Oct 31 2020
Journal Name
International Journal Of Intelligent Engineering And Systems
Automatic Computer Aided Diagnostic for COVID-19 Based on Chest X-Ray Image and Particle Swarm Intelligence
...Show More Authors

View Publication
Scopus (23)
Crossref (6)
Scopus Crossref
Publication Date
Fri May 17 2013
Journal Name
International Journal Of Computer Applications
Applied Minimized Matrix Size Algorithm on the Transformed Images by DCT and DWT used for Image Compression
...Show More Authors

View Publication
Crossref (1)
Crossref