In this paper, we apply the notion of a bipolar fuzzy n-fold KU-ideal of KU- algebras. We introduce the concept of a bipolar fuzzy n-fold KU-ideal and investigate several properties. Also, we give relations between a bipolar fuzzy n- fold KU-ideal and n-fold KU-ideal. The image and the pre-image of bipolar fuzzy n-fold KU-ideals in KU-algebras are defined and how the image and the pre- image of bipolar fuzzy n-fold KU-ideals in KU-algebras become bipolar fuzzy n- fold KU-ideals are studied. Moreover, the product of bipolar fuzzy n-fold KU- ideals in Cartesian product KU-algebras is given.
The aim of this paper is to study the Zariski topology of a commutative KU-algebra. Firstly, we introduce new concepts of a KU-algebra, such as KU-lattice, involutory ideal and prime ideal and investigate some basic properties of these concepts. Secondly, the notion of the topology spectrum of a commutative KU-algebra is studied and several properties of this topology are provided. Also, we study the continuous map of this topological space.
In This paper, we introduce the associated graphs of commutative KU-algebra. Firstly, we define the KU-graph which is determined by all the elements of commutative KU-algebra as vertices. Secondly, the graph of equivalence classes of commutative KU-algebra is studied and several examples are presented. Also, by using the definition of graph folding, we prove that the graph of equivalence classes and the graph folding of commutative KU-algebra are the same, where the graph is complete bipartite graph.
In this work, we study of the concept of a cubic set of a semigroup in KU-algebra. Firstly, we study a cubic sub KU-semigroup and achieve some results in this notion. And then, we get a relation between a cubic sub KU-semi group and a level set of a cubic set. Moreover, we define some cubic ideals of this structure and we found relationships between these ideals.
2010 AMS Classification. 08A72, 03G25, 06F35
In this paper, we define a cubic positive implicative-ideal, a cubic implicative-ideal and a cubic commutative-ideal of a semigroup in KU-algebra as a generalization of a fuzzy (positive implicative-ideal, an implicative-ideal and a commutative-ideal) of a semigroup in KU-algebra. Some relations between these types of cubic ideals are discussed. Also, some important properties of these ideals are studied. Finally, some important theories are discussed. It is proved that every cubic commutative-ideal, cubic positive implicative-ideal, and cubic implicative-ideal are a cubic ideal, but not conversely. Also, we show that if Θ is a cubic positive implicative-ideal and a cubic commutative-ideal then Θ is a cubic implicative-ideal. Some example
... Show MoreThe aim of this work is to a connection between two concepts which are an interval value fuzzy set and a hyper AT-algebra. Also, some properties of these concepts are found. The notions of IVF hyper AT-subalgebras, IVF hyper ideals and IVF hyper AT-ideals are defined. Then IVF (weak, strong) hyper ideals and IVF (weak, strong) hyper AT-ideals are discussed. After that, some relations among these ideals are presented and some interesting theorems are proved.
In this ˑwork, we present theˑ notion of the ˑgraph for a KU-semigroup as theˑundirected simple graphˑ with the vertices are the elementsˑ of and weˑˑstudy the ˑgraph ofˑ equivalence classesˑofˑ which is determinedˑ by theˑ definition equivalenceˑ relation ofˑ these verticesˑ, andˑ then some related ˑproperties areˑ given. Several examples are presented and some theorems are proved. Byˑ usingˑ the definitionˑ ofˑ isomorphicˑ graph, ˑwe showˑ thatˑ the graphˑ of equivalence ˑclasses ˑand the ˑgraphˑof ˑa KU-semigroup ˑ areˑ theˑ sameˑ, in special cases.
An intuitionistic fuzzy set was exhibited by Atanassov in 1986 as a generalization of the fuzzy set. So, we introduce cubic intuitionistic structures on a KU-semigroup as a generalization of the fuzzy set of a KU-semigroup. A cubic intuitionistic k-ideal and some related properties are introduced. Also, a few characterizations of a cubic intuitionistic k-ideal are discussed and new cubic intuitionistic fuzzy sets in a KU-semigroup are defined.
In real-life problems, we use square roots in natural distributions such as (the probability density function), distances and lengths in the Pythagorean theorem, and quadratic formulas in (the height of falling objects), radius of circles, harmonic movements (pendulum and springs), and standard deviation in statistics. We have observed that using fuzzy sets in real-life problems is more convenient than ordinary sets. Therefore, they are important in algebraic structures. As a result, more effort has been made to study square root structures in fuzzy sets. This paper introduces the notion of square roots fuzzy of QS-ideals on QS-algebras and some important characteristics. Some illustrative examples have been provided which prove tha
... Show MoreThe study of homomorphisms in cubic sets is considered one of the important concepts that transfer algebraic properties between different structures, so we study a homomorphism of a cubic set of a semigroup in a KU-algebra and defined the product of two cubic sets in this structure. Firstly, we define the image and the inverse image of a cubic set in a KU-semigroup and achieve some results in this notion. Secondly, the Cartesian product of cubic subsets in a KU-semigroup is discussed and some important characteristics are proved.