In this study used three methods such as Williamson-hall, size-strain Plot, and Halder-Wagner to analysis x-ray diffraction lines to determine the crystallite size and the lattice strain of the nickel oxide nanoparticles and then compare the results of these methods with two other methods. The results were calculated for each of these methods to the crystallite size are (0.42554) nm, (1.04462) nm, and (3.60880) nm, and lattice strain are (0.56603), (1.11978), and (0.64606) respectively were compared with the result of Scherrer method (0.29598) nm,(0.34245),and the Modified Scherrer (0.97497). The difference in calculated results Observed for each of these methods in this study.
The method of operational matrices is based on the Bernoulli and Shifted Legendre polynomials which is used to solve the Falkner-Skan equation. The nonlinear differential equation converting to a system of nonlinear equations is solved using Mathematica®12, and the approximate solutions are obtained. The efficiency of these methods was studied by calculating the maximum error remainder ( ), and it was found that their efficiency increases as increases. Moreover, the obtained approximate solutions are compared with the numerical solution obtained by the fourth-order Runge-Kutta method (RK4), which gives a good agreement.
This research deals with the use of a number of statistical methods, such as the kernel method, watershed, histogram and cubic spline, to improve the contrast of digital images. The results obtained according to the RSME and NCC standards have proven that the spline method is the most accurate in the results compared to other statistical methods
This research deals with the use of a number of statistical methods, such as the kernel method, watershed, histogram, and cubic spline, to improve the contrast of digital images. The results obtained according to the RSME and NCC standards have proven that the spline method is the most accurate in the results compared to other statistical methods.
A study carried out to prepare Hg1-xCdxTe compound and to see the effect on increasing the percentage of x on the compound structure by using x-ray diffraction and atomic absorption for 0
Spelling correction is considered a challenging task for resource-scarce languages. The Arabic language is one of these resource-scarce languages, which suffers from the absence of a large spelling correction dataset, thus datasets injected with artificial errors are used to overcome this problem. In this paper, we trained the Text-to-Text Transfer Transformer (T5) model using artificial errors to correct Arabic soft spelling mistakes. Our T5 model can correct 97.8% of the artificial errors that were injected into the test set. Additionally, our T5 model achieves a character error rate (CER) of 0.77% on a set that contains real soft spelling mistakes. We achieved these results using a 4-layer T5 model trained with a 90% error inject
... Show MoreProfiles of indignation and indiscretion in pre-Islamic poetry