Vehicular ad hoc network (VANET) is a distinctive form of Mobile Ad hoc Network (MANET) that has attracted increasing research attention recently. The purpose of this study is to comprehensively investigate the elements constituting a VANET system and to address several challenges that have to be overcome to enable a reliable wireless communications within a vehicular environment. Furthermore, the study undertakes a survey of the taxonomy of existing VANET routing protocols, with particular emphasis on the strengths and limitations of these protocols in order to help solve VANET routing issues. Moreover, as mobile users demand constant network access regardless of their location, this study seeks to evaluate various mobility models for vehicular networks. A comparison of IEEE 802.11p and Long-Term Evolution (LTE) technologies for several applications in the vehicular networking field is also carried out in the study. One key component in the VANET structure that this study intends to draw special attention is the warning structure consisting of Intelligent Traffic Lights (ITLs), which is designed to inform drivers regarding the existing traffic situation, thus enabling them to make appropriate decisions. Last but not least, the VANET simulation tools for data collection are also evaluated.
In this study, the response and behavior of machine foundations resting on dry and saturated sand was investigated experimentally. In order to investigate the response of soil and footing to steady state dynamic loading, a physical model was manufactured. The manufactured physical model could be used to simulate steady state harmonic load at different operating frequencies. Total of (84) physical models were performed. The parameters that were taken into considerations include loading frequency, size of footing and different soil conditions. The footing parameters were related to the size of the rectangular footing and depth of embedment. Two sizes of rectangular steel model footing were used (100 200 12.5 mm) and (200 400 5.0 mm).
... Show MoreRecent population studies have shown that placenta accreta spectrum (PAS) disorders remain undiagnosed before delivery in half to two-thirds of cases. In a series from specialist diagnostic units in the USA, around one-third of cases of PAS disorders were not diagnosed during pregnancy. Maternal
This review delves deep into the intricate relationship between urban planning and flood risk management, tracing its historical trajectory and the evolution of methodologies over time. Traditionally, urban centers prioritized defensive measures, like dikes and levees, with an emphasis on immediate solutions over long-term resilience. These practices, though effective in the short term, often overlooked broader environmental implications and the necessity for holistic planning. However, as urban areas burgeoned and climate change introduced new challenges, there has been a marked shift in approach. Modern urban planning now emphasizes integrated blue-green infrastructure, aiming to harmonize human habitation with water cycles. Resil
... Show MoreThis work implements an Electroencephalogram (EEG) signal classifier. The implemented method uses Orthogonal Polynomials (OP) to convert the EEG signal samples to moments. A Sparse Filter (SF) reduces the number of converted moments to increase the classification accuracy. A Support Vector Machine (SVM) is used to classify the reduced moments between two classes. The proposed method’s performance is tested and compared with two methods by using two datasets. The datasets are divided into 80% for training and 20% for testing, with 5 -fold used for cross-validation. The results show that this method overcomes the accuracy of other methods. The proposed method’s best accuracy is 95.6% and 99.5%, respectively. Finally, from the results, it
... Show MoreDeep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to
... Show MoreThe main purpose of this work is to introduce some types of fuzzy convergence sequences of operators defined on a standard fuzzy normed space (SFN-spaces) and investigate some properties and relationships between these concepts. Firstly, the definition of weak fuzzy convergence sequence in terms of fuzzy bounded linear functional is given. Then the notions of weakly and strongly fuzzy convergence sequences of operators are introduced and essential theorems related to these concepts are proved. In particular, if ( ) is a strongly fuzzy convergent sequence with a limit where linear operator from complete standard fuzzy normed space into a standard fuzzy normed space then belongs to the set of all fuzzy bounded linear operators
The aim of this paper is to introduce the concept of N and Nβ -closed sets in terms of neutrosophic topological spaces. Some of its properties are also discussed.