Because the Coronavirus epidemic spread in Iraq, the COVID-19 epidemic of people quarantined due to infection is our application in this work. The numerical simulation methods used in this research are more suitable than other analytical and numerical methods because they solve random systems. Since the Covid-19 epidemic system has random variables coefficients, these methods are used. Suitable numerical simulation methods have been applied to solve the COVID-19 epidemic model in Iraq. The analytical results of the Variation iteration method (VIM) are executed to compare the results. One numerical method which is the Finite difference method (FD) has been used to solve the Coronavirus model and for comparison purposes. The numerical simulation methods which are Mean Monte Carlo Finite difference (MMC_FD) and Mean Latin Hypercube Finite difference (MLH_FD), are also used to solve the proposed epidemic model under study. The obtained results are discussed, tabulated, and represented graphically. Finally, the absolute error is the tool used to compare the numerical simulation solutions from 2020 to 2024 years. The behavior of the Coronavirus in Iraq has been expected for 4 years from 2020 to 2024 using the proposed numerical simulation methods.
In this paper was discussed the process of compounding two distributions using new compounding procedure which is connect a number of life time distributions ( continuous distribution ) where is the number of these distributions represent random variable distributed according to one of the discrete random distributions . Based on this procedure have been compounding zero – truncated poisson distribution with weibell distribution to produce new life time distribution having three parameter , Advantage of that failure rate function having many cases ( increasing , dicreasing , unimodal , bathtube) , and study the resulting distribution properties such as : expectation , variance , comulative function , reliability function and fa
... Show MoreIn this work, results from an optical technique (laser speckle technique) for measuring surface roughness was done by using statistical properties of speckle pattern from the point of view of computer image texture analysis. Four calibration relationships were used to cover wide range of measurement with the same laser speckle technique. The first one is based on intensity contrast of the speckle, the second is based on analysis of speckle binary image, the third is on size of speckle pattern spot, and the latest one is based on characterization of the energy feature of the gray level co-occurrence matrices for the speckle pattern. By these calibration relationships surface roughness of an object surface can be evaluated within the
... Show MoreThis paper presents an analytical study for the magnetohydrodynamic (MHD) flow of a generalized Burgers’ fluid in an annular pipe. Closed from solutions for velocity is obtained by using finite Hankel transform and discrete Laplace transform of the sequential fractional derivatives. Finally, the figures are plotted to show the effects of different parameters on the velocity profile.
To avoid the negative effects due to inflexibility of the domestic production inresponse to the increase in government consumption expenditure leads to more imports to meet the increase in domestic demand resulting from the increase in government consumption expenditure. Since the Iraqi economy economy yield unilateral depends on oil revenues to finance spending, and the fact government consumer spending is a progressive high flexibility the increase in overall revenues, while being a regressive flexibility is very low in the event of reduced public revenues, and therefore lead to a deficit in the current account position. And that caused the deficit for imbalance are the disruption of the
... Show MoreAs the bit rate of fiber optic transmission systems is increased to more than , the system will suffer from an important random phenomena, which is called polarization mode dispersion. This phenomenon contributes effectively to: increasing pulse width, power decreasing, time jittering, and shape distortion. The time jittering means that the pulse center will shift to left or right. So that, time jittering leads to interference between neighboring pulses. On the other hand, increasing bit period will prevent the possibility of sending high rates. In this paper, an accurate mathematical analysis to increase the rates of transmission, which contain all physical random variables that contribute to determine the transmission rates, is presen
... Show MoreCuO nanoparticles were synthesized in two different ways, firstly by precipitation method using copper acetate monohydrate Cu(CO2CH13)2·H2O, glacial acetic acid (CH3COOH) and sodium hydroxide(NaOH), and secondly by sol-gel method using copper chloride(CuCl2), sodium hydroxide (NaOH) and ethanol (C2H6O). Results of scanning electron microscopy (SEM) showed that different CuO nanostructures (spherical and Reef) can be formed using precipitation and sol- gel process, respectively, at which the particle size was found to be less than 2 µm. X-ray diffraction (XRD)manifested that the pure synthesized powder has no inclusions that may exist during preparations. XRD result
... Show MoreThe development that solar energy will have in the next years needs a reliable estimation of available solar energy resources. Several empirical models have been developed to calculate global solar radiation using various parameters such as extraterrestrial radiation, sunshine hours, albedo, maximum temperature, mean temperature, soil temperature, relative humidity, cloudiness, evaporation, total perceptible water, number of rainy days, and altitude and latitude. In present work i) First part has been calculated solar radiation from the daily values of the hours of sun duration using Angstrom model over the Iraq for at July 2017. The second part has been mapping the distribution of so