Production logging is used to diagnose well production problems by evaluating the flow profile, entries of unwanted fluids and downhole flow regimes. Evaluating wells production performance can be easily induce from production logs through interpretation of production log data to provide velocity profile and contribution of each zone on total production. Production logging results supply information for reservoir modeling, provide data to optimize the productivity of existing wells and plan drilling and completion strategies for future wells. Production logging was carried out in a production oil well from Mishrif formation of West Qurna field, with the objective to determine the flow profile and fluid contributions from the perforations after the stimulation job. The measurements were made under shut-in and three choke sizes (60/64”, 46/64” and 32/64”) flowing conditions. Overall, the data quality is acceptable to generate a good analysis. From the flowing surveys, it was observed that just the intervals 2250-2285 m and 2335-2375 m are contributing to the total well production while the well was flowing through the chokes 60/64” and 46/64”. However, most production is coming from the interval 2250-2285 m for each choke. The flow profile changed with the 32/64”, the interval 2250-2285 remained producing but the interval 2335-2375 m started receiving fluid from the upper interval. This cross flow increased after the well was shut in. The temperature log shows a normal behavior while the well is flowing through the 60/64” and 46/64” chokes, but changes as result of the cross flow with the 32/64” choke and with the well shut in. From the capacitance readings and pseudo fluid density (density from differential pressure) only oil is being produced, and there is a static water column at the sump.
In this study, the response of ten composite post-tensioned concrete beams topped by a reinforced concrete deck with adequate reinforcing shear connectors is investigated. Depending on the concrete compressive strength of the deck slab (20, 30, and 40 MPa), beams are grouped into three categories. Seven of these beams are exposed to a fire attack of 700 and 800 °C temperature simultaneously with or without the presence of a uniformly distributed sustained static loading. After cooling back to ambient temperature, these composite beams are loaded up to failure, using a force control module, by monotonic static loading in a four-point-bending setup with two symmetrical concentrated loads applied in
In this paper, wavelets were used to study the multivariate fractional Brownian motion through the deviations of the random process to find an efficient estimation of Hurst exponent. The results of simulations experiments were shown that the performance of the proposed estimator was efficient. The estimation process was made by taking advantage of the detail coefficients stationarity from the wavelet transform, as the variance of this coefficient showed the power-low behavior. We use two wavelet filters (Haar and db5) to manage minimizing the mean square error of the model.
Gingival crevicular fluid (GCF) may reflect the events associated with orthodontic tooth movement. Attempts have been conducted to identify biomarkers reflecting optimum orthodontic force, unwanted sequallea (i.e. root resorption) and accelerated tooth movement. The aim of the present study is to find out a standardized GCF collection, storage and total protein extraction method from apparently healthy gingival sites with orthodontics that is compatible with further high-throughput proteomics. Eighteen patients who required extractions of both maxillary first premolars were recruited in this study. These teeth were randomly assigned to either heavy (225g) or light force (25g), and their site specific GCF was collected at baseline and aft
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show Moreplanning is among the most significant in the field of robotics research. As it is linked to finding a safe and efficient route in a cluttered environment for wheeled mobile robots and is considered a significant prerequisite for any such mobile robot project to be a success. This paper proposes the optimal path planning of the wheeled mobile robot with collision avoidance by using an algorithm called grey wolf optimization (GWO) as a method for finding the shortest and safe. The research goals in this study for identify the best path while taking into account the effect of the number of obstacles and design parameters on performance for the algorithm to find the best path. The simulations are run in the MATLAB environment to test the
... Show MoreIn this work, polyvinylpyrrolidone (PVP), Multi-walled carbon nanotubes (MWCNTs) nanocomposite was prepared and hybrid with Graphene (Gr) by casting method. The morphological and optical properties were investigated. Fourier Transformer-Infrared (FT-IR) indicates the presence of primary distinctive peaks belonging to vibration groups that describe the prepared samples. Scanning Electron Microscopy (SEM) images showed a uniform dispersion of graphene within the PVP-MWCNT nanocomposite. The results of the optical study show decrease in the energy gap with increasing MWCNT and graphene concentration. The absorption coefficient spectra indicate the presence of two absorption peaks at 282 and 287 nm attributed to the π-π* electronic tr
... Show More