Upper limb amputation is a condition that severely limits the amputee’s movement. Patients who have lost the use of one or more of their upper extremities have difficulty performing activities of daily living. To help improve the control of upper limb prosthesis with pattern recognition, non-invasive approaches (EEG and EMG signals) is proposed in this paper and are integrated with machine learning techniques to recognize the upper-limb motions of subjects. EMG and EEG signals are combined, and five features are utilized to classify seven hand movements such as (wrist flexion (WF), outward part of the wrist (WE), hand open (HO), hand close (HC), pronation (PRO), supination (SUP), and rest (RST)). Experiments demonstrate that using mean absolute value (MAV), waveform length (WL), Wilson Amplitude (WAMP), Sine Slope Changes (SSC), and Cardinality features of the proposed algorithm achieves a classification accuracy of 89.6% when classifying seven distinct types of hand and wrist movement. Index Terms— Human Robot Interaction, Bio-signals Analysis, LDA classifier.
The purpose of the current investigation is to distinguish between working memory ( ) in five patients with vascular dementia ( ), fifteen post-stroke patients with mild cognitive impairment ( ), and fifteen healthy control individuals ( ) based on background electroencephalography (EEG) activity. The elimination of EEG artifacts using wavelet (WT) pre-processing denoising is demonstrated in this study. In the current study, spectral entropy ( ), permutation entropy ( ), and approximation entropy ( ) were all explored. To improve the classification using the k-nearest neighbors ( NN) classifier scheme, a comparative study of using fuzzy neighbourhood preserving analysis with -decomposition ( ) as a dimensionality reduction technique an
... Show MoreOne of the recent significant but challenging research studies in computational biology and bioinformatics is to unveil protein complexes from protein-protein interaction networks (PPINs). However, the development of a reliable algorithm to detect more complexes with high quality is still ongoing in many studies. The main contribution of this paper is to improve the effectiveness of the well-known modularity density ( ) model when used as a single objective optimization function in the framework of the canonical evolutionary algorithm (EA). To this end, the design of the EA is modified with a gene ontology-based mutation operator, where the aim is to make a positive collaboration between the modularity density model and the proposed
... Show MoreIdentification by biological features gets tremendous importance with the increasing of security systems in society. Various types of biometrics like face, finger, iris, retina, voice, palm print, ear and hand geometry, in all these characteristics, iris recognition gaining attention because iris of every person is unique, it never changes during human lifetime and highly protected against damage. This unique feature shows that iris can be good security measure. Iris recognition system listed as a high confidence biometric identification system; mostly it is divide into four steps: Acquisition, localization, segmentation and normalization. This work will review various Iris Recognition systems used by different researchers for each recognit
... Show MoreBackground: Bone mineral density (BMD) has been assessed using Dual-Energy X-ray absorptiometry (DEXA). This procedure is considered to be of vital importance in assessing the general condition of individuals concerning their skeletal mineralization. BMD is measured according to the results of the DEXA examination of the vertebral column and pelvis. Although diabetes mellitus (D.M.)is known to affect BMD, the information regarding this relationship is not currently particularly clear. Objective: This study concentrates on the point that the assessment of BMD for the vertebral column is insuffi-cient to give a realistic and correct picture of the mineralization of the remaining part of the skeleton. Besides, this study elicited a gen
... Show MoreA system was used to detect injuries in plant leaves by combining machine learning and the principles of image processing. A small agricultural robot was implemented for fine spraying by identifying infected leaves using image processing technology with four different forward speeds (35, 46, 63 and 80 cm/s). The results revealed that increasing the speed of the agricultural robot led to a decrease in the mount of supplements spraying and a detection percentage of infected plants. They also revealed a decrease in the percentage of supplements spraying by 46.89, 52.94, 63.07 and 76% with different forward speeds compared to the traditional method.