The present work presents a new experimental study of the enhancement of turbulent
convection heat transfer inside tubes for combined thermal and hydrodynamic entry length of one
popular “turbulator” (twisted tape with width slightly less than internal tube diameter) inserted for
fire tube boilers. Cylindrical combustion chamber was used to burn (1.6 to 7kg/h) fuel oil #2 to
deliver hot gases with ranges of Reynolds number (10500 to 21700), and (11400 to 24150) for both
empty and inserted tube respectively.A uniform wall temperature technique was used by keeping
approximately constant water temperature difference (25ºC) between inlet and exit cooling water in
parallel flow shell and tube heat exchanger. The test
In this work, MWCNT in the epoxy can be prepared at room temperature and thickness (1mm) at different concentration of CNTs powder. Optical properties of multi-walled carbon nanotubes (CNTs) reinforced epoxy have been measured in the range of (300-800)nm. The electronic transition in pure epoxy and CNT/epoxy indicated direct allowed transition. Also, it is found that the energy gap of epoxy is 4.1eV and this value decreased within range of (4.1-3.5)eV when the concentration of CNT powder increased from (0.001-0.1)% respectively.
The optical constants which include (the refractive index (n), the extinction coefficient (k), real (ε1) and imaginarily (ε2) part of dielectric constant calculated in the of (300-800)nm at different concent
The ratio of draft tube to reactor diameters is of decisive importance for the operation behavior of air lift loop reactors. The influence of draft tube geometry was investigated with respect to oxygen mass transfer and mixing time. The diameter ratio was varied between 0.33 and 0.80. The measurements were performed in two loop reactors with liquid capacities of 11.775 and 26.49 liters using aqueous with solutions of different coalescence behavior. The results show that there is no single diameter ratio which would produce most favorable conditions for the two process parameters. With respect to the more important requirements of aerobic cultures, i.e high oxygen mass transfer and efficient mixing, a diameter ratio between 0.5 and 0.6 is
... Show MoreShell-and-double concentric tube heat exchanger is one of the new designs that enhance the heat transfer process. Entransy dissipation is a recent development that incorporates thermodynamics in the design and optimization of heat exchangers. In this paper the concept of entransy dissipation is related to the shell-and-double concentric tube heat exchanger for the first time, where the experiments were conducted using hot oil with temperature of 80, 100 and 120°C, flow rate of cold water was 0.667, 1, and 1.334 kg/m3 respectively and the temperature of inlet cold water was 20°C. The entransy dissipation rate due to heat transfer and to fluid friction or pressure drop was studied.
Non-thermal atmospheric pressure plasma has emerged as a
new promising tool in medicine and biology. In this work, A DBD
system was built as a source of atmospheric pressure non-thermal
Plasma suitable for clinical and biological applications. E. coli and
staphylococcus spp bacteria were exposed to the DBD plasma for a
period of time as inactivation (sterilization) process. A series of
experiments were achieved under different operating conditions. The
results showed that the inactivation, of the two kinds of bacteria, was
affected (increasing or decreasing) according to operation conditions
because they affects, as expected, the produced plasma properties
according to those conditions.
The development of wireless sensor networks (WSNs) in the underwater environment leads to underwater WSN (UWSN). It has severe impact over the research field due to its extensive and real-time applications. However effective execution of underwater WSNs undergoes several problems. The main concern in the UWSN is sensor nodes’ energy depletion issue. Energy saving and maintaining quality of service (QoS) becomes highly essential for UWASN because of necessity of QoS application and confined sensor nodes (SNs). To overcome this problem, numerous prevailing methods like adaptive data forwarding techniques, QoS-based congestion control approaches, and various methods have been devised with maximum throughput and minimum network lifesp
... Show MoreRenewable energy sources - realities of the present and future options
Many of the directories indicate that the global energy system begin with a period of transition from total dependence on fossil energy sources, particularly oil, Into a new era in which renewable energy sources play an important role in meeting the growing needs of energy demand. There are many factors that will contribute to the strengthening of this trend towards transformation, which also will decide how quickly this transformation of renewable energy systems effectively in the global system of energy demand.
These factors, In brief: the size of environmental pollution and cl
... Show MoreThis study has been undertaken to postulate the mechanism of impact test at low velocities. Thin-walled tubes of 100Cr6 were deformed under axial compression. In the present work there are seven velocities (4.429,4.652,5.240,5.600,5.942,6.264, 6.569) m\sec were applied to show how they effect the load, change in length, also the kinetic energy. However, the comparison between the obtained results and the other studies (Alexandar[3] , Abramowicz[4], Ayad[5]) was made the present work and Ayad data show good agreement. Load, change in length, kinetic energy were determined to understand the impact test.
The development of wireless sensor networks (WSNs) in the underwater environment leads to underwater WSN (UWSN). It has severe impact over the research field due to its extensive and real-time applications. However effective execution of underwater WSNs undergoes several problems. The main concern in the UWSN is sensor nodes’ energy depletion issue. Energy saving and maintaining quality of service (QoS) becomes highly essential for UWASN because of necessity of QoS application and confined sensor nodes (SNs). To overcome this problem, numerous prevailing methods like adaptive data forwarding techniques, QoS-based congestion control approaches, and various methods have been devised with maximum throughput and minimum network lifesp
... Show MoreIn this research we solved numerically Boltzmann transport equation in order to calculate the transport parameters, such as, drift velocity, W, D/? (ratio of diffusion coefficient to the mobility) and momentum transfer collision frequency ?m, for purpose of determination of magnetic drift velocity WM and magnetic deflection coefficient ? for low energy electrons, that moves in the electric field E, crossed with magnetic field B, i.e; E×B, in the nitrogen, Argon, Helium and it's gases mixtures as a function of: E/N (ratio of electric field strength to the number density of gas), E/P300 (ratio of electric field strength to the gas pressure) and D/? which covered a different ranges for E/P300 at temperatures 300°k (Kelvin). The results show
... Show More