Background/Objectives: The purpose of this study was to classify Alzheimer’s disease (AD) patients from Normal Control (NC) patients using Magnetic Resonance Imaging (MRI). Methods/Statistical analysis: The performance evolution is carried out for 346 MR images from Alzheimer's Neuroimaging Initiative (ADNI) dataset. The classifier Deep Belief Network (DBN) is used for the function of classification. The network is trained using a sample training set, and the weights produced are then used to check the system's recognition capability. Findings: As a result, this paper presented a novel method of automated classification system for AD determination. The suggested method offers good performance of the experiments carried out show that the use of Gray Level Co-occurrence Matrix (GLCM) features and DBN classifier provides 98.26% accuracy with the two specific classes were tested. Improvements/Applications: AD is a neurological condition affecting the brain and causing dementia that may affect the mind and memory. The disease indirectly impacts more than 15 million relatives, companions and guardians. The results of the present research are expected to help the specialist in decision making process.
In recent days, the escalating need to seamlessly transfer data traffic without discontinuities across the Internet network has exerted immense pressure on the capacity of these networks. Consequently, this surge in demand has resulted in the disruption of traffic flow continuity. Despite the emergence of intelligent networking technologies such as software-defined networking, network cloudification, and network function virtualization, they still need to improve their performance. Our proposal provides a novel solution to tackle traffic flow continuity by controlling the selected packet header bits (Differentiated Services Code Point (DSCP)) that govern the traffic flow priority. By setting the DSCP bits, we can determine the appropriate p
... Show MoreUsing the Neural network as a type of associative memory will be introduced in this paper through the problem of mobile position estimation where mobile estimate its location depending on the signal strength reach to it from several around base stations where the neural network can be implemented inside the mobile. Traditional methods of time of arrival (TOA) and received signal strength (RSS) are used and compared with two analytical methods, optimal positioning method and average positioning method. The data that are used for training are ideal since they can be obtained based on geometry of CDMA cell topology. The test of the two methods TOA and RSS take many cases through a nonlinear path that MS can move through that region. The result
... Show MoreWireless control networks (WCNs), based on distributed control systems of wireless sensor and actuator networks, integrate four technologies: control, computer network and wireless communications. Electrostatic precipitator (ESP) in cement plants reduces the emissions from rotary kiln by 99.8% approximately. It is an important thing to change the existing systems (wireline) to wireless because of dusty and hazardous environments. In this paper, we designed a wireless control system for ESP using Truetime 2 beta 6 simulator, depending on the mathematical model that have been built using identification toolbox of Matlab v7.1.1. We also study the effect ofusing wireless network on performance and stability of the closed l
... Show MoreIn order to find the relationship between Helicobacter pylori infection and hematological disease are disorders which primarily affect the blood and blood-forming organs. One hundred and three blood samples were taken for people aged (20-68) years for the period from 10/1/2021 to 1/3/2022, divided into three groups. The first group included 44-person H. pylori-infected with symptoms of infection, the second group had 19-person H. pylori-infected but without symptoms, and the third group included 40 people without H. pylori infection. All studied groups were carried out to measure anti-IgG Ab, Vac A and Ferritin by Enzyme Linked Immunosorbent Assay (ELISA) technique. The statistical analysis indicates a non-significant difference in Vac A (p
... Show MoreWomen with diabetes in pregnancy (type 1, type 2 and gestational) are at increased risk for adverse pregnancy outcomes which also include infant development of congenital heart disease and even fetal death. Adequate glycemic control before and during pregnancy is crucial to improve outcome
In this study, a cholera model with asymptomatic carriers was examined. A Holling type-II functional response function was used to describe disease transmission. For analyzing the dynamical behavior of cholera disease, a fractional-order model was developed. First, the positivity and boundedness of the system's solutions were established. The local stability of the equilibrium points was also analyzed. Second, a Lyapunov function was used to construct the global asymptotic stability of the system for both endemic and disease-free equilibrium points. Finally, numerical simulations and sensitivity analysis were carried out using matlab software to demonstrate the accuracy and validate the obtained results.
This study was initiated to examine the tomato-infecting viruses belonging to the Tobamovirus and Potexvirus genera in Iraq. Field observations and surveys were carried out for three successive cropping seasons (2020/21 to 2022/23) in selected tomato production areas. The purpose was to identify the main viruses associated with tomato epidemics and assess the impact of different tomato cultivars on disease occurrence. A total of 700 tomato leaf samples were collected from seven governorates (Baghdad, Diyala, Babylon, Najaf, Kerbala, Nasiriya, and Basrah) and tested using pathogen-specific immunostrip kits. The survey showed a presence of Tomato brown rugose fruit virus (ToBRFV), Tobacco mosaic virus (TMV), Pepper mild mottle virus (
... Show MoreIn this paper, a subspace identification method for bilinear systems is used . Wherein a " three-block " and " four-block " subspace algorithms are used. In this algorithms the input signal to the system does not have to be white . Simulation of these algorithms shows that the " four-block " gives fast convergence and the dimensions of the matrices involved are significantly smaller so that the computational complexity is lower as a comparison with " three-block " algorithm .