Background/Objectives: The purpose of this study was to classify Alzheimer’s disease (AD) patients from Normal Control (NC) patients using Magnetic Resonance Imaging (MRI). Methods/Statistical analysis: The performance evolution is carried out for 346 MR images from Alzheimer's Neuroimaging Initiative (ADNI) dataset. The classifier Deep Belief Network (DBN) is used for the function of classification. The network is trained using a sample training set, and the weights produced are then used to check the system's recognition capability. Findings: As a result, this paper presented a novel method of automated classification system for AD determination. The suggested method offers good performance of the experiments carried out show that the use of Gray Level Co-occurrence Matrix (GLCM) features and DBN classifier provides 98.26% accuracy with the two specific classes were tested. Improvements/Applications: AD is a neurological condition affecting the brain and causing dementia that may affect the mind and memory. The disease indirectly impacts more than 15 million relatives, companions and guardians. The results of the present research are expected to help the specialist in decision making process.
In data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.
In this research, the Williamson-Hall method and of size-strain plot method was employed to analyze X- ray lines for evaluating the crystallite size and lattice strain and of cadmium oxide nanoparticles. the crystallite size value is (15.2 nm) and (93.1 nm) and lattice strain (4.2 x10−4 ) and (21x10−4) respectively. Also, other methods have been employed to evaluate the crystallite size. The current methods are (Sherrer and modified Sherrer methods ) and their results are (14.8 nm) and (13.9nm) respectively. Each method of analysis has a different result because the alteration in the crystallite size and lattice strain calculated according to the Williamson-Hall and size-strain plot methods shows that the non-uniform strain in nan
... Show MoreIn this work, an enhanced Photonic Crystal Fiber (PCF) based on Surface Plasmon Resonance (SPR) sensor using a sided polished structure for the detection of toxic ions Arsenic in water was designed and implemented. The SPR curve can be obtained by polishing the side of the PCF after coating the Au film on the side of the polished area, the SPR curve can be obtained. The proposed sensor has a clear SPR effect, according to the findings of the experiments. The estimated signal to Noise Ratio (SNR), sensitivity (S), resolution (R), and Figures of merit (FOM) are approaching; the SNR is 0.0125, S is 11.11 μm/RIU, the resolution is 1.8x〖10〗^(-4), and the FOM is 13.88 for Single-mode Fiber- Photonic Crystal Fiber- single mode Fiber (SMF-P
... Show MoreAbstract Background: Timely diagnosis of periodontal disease is crucial for restoring healthy periodontal tissue and improving patients’ prognosis. There is a growing interest in using salivary biomarkers as a noninvasive screening tool for periodontal disease. This study aimed to investigate the diagnostic efficacy of two salivary biomarkers, lactate dehydrogenase (LDH) and total protein, for periodontal disease by assessing their sensitivity in relation to clinical periodontal parameters. Furthermore, the study aimed to explore the impact of systemic disease, age, and sex on the accuracy of these biomarkers in the diagnosis of periodontal health. Materials and methods: A total of 145 participants were categorized into three groups based
... Show MoreActive learning is a teaching method that involves students actively participating in activities, exercises, and projects within a rich and diverse educational environment. The teacher plays a role in encouraging students to take responsibility for their own education under their scientific and pedagogical supervision and motivates them to achieve ambitious educational goals that focus on developing an integrated personality for today’s students and tomorrow’s leaders. It is important to understand the impact of two proposed strategies based on active learning on the academic performance of first-class intermediate students in computer subjects and their social intelligence. The research sample was intentionally selected, consis
... Show MoreAbstract
In this investigation, Al2O3 nano material of 50nm particles size were added to the 6061 Al aluminium alloy by using the stir casting technique to fabricate the nanocomposite of 10wt% Al2O3. The experimental results observed that the addition of 10wt% Al2O3 improved the fatigue life and strength of constant and cumulative fatigue. Comparison between the S-N curves behaviour of metal matrix (AA6061) and the nanocomposite 10wt% Al2O3 has been made. The comparison revealed that 12.8% enhancement in fatigue strength at 107cycles due to 10wt% nano reinforcement. Also cumulative fatigue l
... Show MoreLafutidine (LAF) a newly developed histamine H2-receptor antagonist with absorption window makes it a good candidate to be prepared as floating drug delivery system. The current study involves formulation and in- Vitro evaluation of lafutidine as floating microspheres. Different formulation variables that affect the physicochemical properties of the prepared microspheres besides to the drug release behavior were investigated. Fourteen formulas were prepared by emulsion (o/w) solvent evaporation method using Ethyl cellulose (EC) as the polymeric matrix and tween 80 (TW80) as an emulsifying agent. The prepared formulas were evaluated for their percentage buoyancy (%), Percentage yield (%) and Entrapment efficiency (EE %). The results obt
... Show More