We investigated at the optical properties, structural makeup, and morphology of thin films of cadmium telluride (CdTe) with a thickness of 150 nm produced by thermal evaporation over glass. The X-ray diffraction study showed that the films had a crystalline composition, a cubic structure, and a preference for grain formation along the (111) crystallographic direction. The outcomes of the inquiry were used to determine these traits. With the use of thin films of CdTe that were doped with Ag at a concentration of 0.5%, the crystallization orientations of pure CdTe (23.58, 39.02, and 46.22) and CdTe:Ag were both determined by X-ray diffraction. orientations (23.72, 39.21, 46.40) For samples that were pure and those that were doped with silver, the optical band gap shrank by (1.52-1.47) eV (400–1100)nm resulting in a drop in the absorption coefficient. An incident power density of (100 mW/cm2) was used to examine the I-V properties of heterojunctions created by light on a variety of clean and doped materials. In accordance with the X-ray diffraction analysis, the films had a cubic structure and dominated grain growth along the (111) crystallographic direction.
ABSTRACT Background: One of the methods used in the treatment of maxillofacial fracture is intermaxillary fixation(IMF), the most common type is the Erich arch bar with interdental wiring. This study was conducted to investigate the impact of intermaxillary fixation on gingival health condition among a group of patients with facial fracture in relation to salivary physical properties. Materials and methods: Thirty patients with an age range of (17-37) years old with facial fractures and indicated for IMF. Plaque index and gingival index (Loe, 1967) were used to assess both of them before application and after removal of IMF. Unstimulated saliva sample collection was carried out under standardized conditions according to Navazesh and Kum
... Show MoreBackground: Mouth breathing can lead to introduce cold, dry unprepared air that insults the tissue of oral cavity, nasopharynx and lung, leading in turn to pathological changes in oronasal cavity, nasopharyngeal and other respiratory tissue, mouth breathing associated with nasal obstruction may lead to many health problems, in particular oral health problems such as inflammation of gingiva, oral dryness, change in oral environment that may decrease pH, salivary flow rate and increase bacteria and dental caries.Aims of the present study were to assess the oral health condition among mouth breather associated with nasal obstruction, including dental caries, oral cleanliness and gingival health condition as well as to evaluate the changes in s
... Show MoreAdsorption studies were carried out to test the ability of the Iraqi rice bran (Amber type) to adsorb some metals divalent cations (Cd2+, Co2+, Cu2+, Fe2+, Ni2+, Pb2+, and Zn2+) as an alternative tool to remove these pollutants from water. The Concentrations of these ions in water were measured using flame and flamless atomic absorption spectrophotometry techniques. The applicability of the adsorption isotherm on Langmuir or Freundlisch equation were tested and found to be dependent on the type of ions. The results showed different adsorptive behavior and different capacities of the adsorption of the ions on the surface of the bran. The correlation between the amounts adsorbed and different cation parameters including (electronegativity, io
... Show MoreIn this work, two groups of nanocomposite material, was prepared from unsaturated polyester resin (UPE), they were prepared by hand lay-up method. The first group was consisting of (UPE) reinforced with individually (ZrO2) nanoparticles with particle size (47.23nm). The second group consists of (UPE) reinforced with hybrid nanoparticles consisting of zirconium oxide and yttrium oxide (70% ZrO2 + 30% Y2O3) with particles size (83.98nm). This study includes the effect of selected volume fraction (0.5%, 1%, 1.5%, 2%, 2.5%, 3%) for both reinforcement nano materials. Experimental investigation was carried out by analyzing the thermo-physical properties like thermal conductivity, thermal diffusivity and specific heat for the polymeric composit
... Show MoreThe research abstract included introduction and the importance of the research, also included display of the problem represented by weakness for the players when performing some of the basic skills in badminton and the shuttle not reaching to the back corners of the court which gives the player the opportunity to win through applying the pressure on the opponent and make him away from the control center(T) which definitely required level of a collection muscular strength contributed in performance perhaps this related to a number of reasons related with weakness in physical changes especially explosive and characterized by speed forces for the badminton players and be acquainted with them and knowing the extent of their effect in performanc
... Show MoreA cost-effective and efficient detector was created to conduct thorough turbidimetric measurements by reaction of Co (II) ion with calcium ferro cyanide to form bright green particulate, using the method of continuous flow injection analysis, the use of NAG-5SX1-1D-SSP Analyzer in determining cobalt (II) ion in a test for the validity of the new design. The NAG-5SX1-1D-SSP Analyzer is composed of five irradiation sources of white snow leds having the diameter of 10 mm with one solar cell of 55 mm length, 13.5 mm width. Using a selector switch to select the optimum voltage to be used which was 2.7 VDC. Under conditions of optimization, cobalt (II) ion was determined at 0.005–20 mmol. L–1(n = 23) while linearity dynamic range 0.005–7 mm
... Show MorePorous Silicon (PSi) has been produced in this work by using Photochemical (PC) etching process by using a hydrofluoric acid (HF) solution. The irradiation has been achieved using quartz- tungsten halogen lamp. The influence of various irradiation times on the properties of PSi اmaterial such as layer thickness, etching rate and porosity was investigated in this work too.
The XRD has been studied to determine the crystal structure and the crystalline size of PSi material
Background: Polyetheretherketone (PEEK) is a promising implant material due to its superior biomechanical strength. However, due to its hydrophobic nature and lack of cellular adhesion properties, it has poor integration with bone tissue. Methods: A fractional CO2 laser was used with various parameters for surface texturing of PEEK substrate to enhance its surface properties. An optical microscope and field-emission scanning electron microscope (FESEM) were used to examine the surface morphology of untextured and laser-textured samples. Energy dispersive X-ray spectroscopy (EDX) was performed to determine the effect of the laser on the microstructure of PEEK. Surface microroughness, atomic force microscopy (AFM), and wettability were invest
... Show More