Preferred Language
Articles
/
lIafrYYBIXToZYALDKPD
Experimental and Numerical Investigations of Composite Concrete–Steel Plate Shear Walls Subjected to Axial Load
...Show More Authors

This research is presented experimental and numerical investigations of composite concrete-steel plate shear walls under axial loads to predicate the effect of both concrete compressive strength and aspect ratio of the wall on the axial capacity, lateral displacement and axial shortening of the walls. The experimental program includes casting and testing two groups of walls with various aspect ratios. The first group with aspect ratio H/L=1.667 and the second group with aspect ratio H/L=2. Each group consists of three composite concrete -steel plate wall with three targets of cube compressive strength of values 39, 54.75 and 63.3 MPa. The tests result obtained that the increase in concrete compressive strength results in increasing the ultimate axial load capacity of the wall. Thus, the failure load, the corresponding lateral displacement and the axial shortening increased by increasing the compressive strength and the rate of increase  in failure load of the tested walls  was about (34.5% , 23.1%) as compressive strength increased from 39 to 63.3 MPa for case of composite wall  with aspect ratio H/L=1.667 and  H/L=2, respectively. The effect of increasing aspect ratio on the axial load capacity, lateral displacement and axial shortening of the walls was also studied in this study. Compared the main performance characteristic of the testing walls, it can be indicated that the walls with aspect ratio equal to (2) failed under lower axial loads as compared with walls with aspect ratio equal to 1.667 ratios by about (5.8, 12, 15.6 %) at compressive strength (39, 54.75, 63.3 MPa), respectively and experienced large flexural deformations. The mode of failure of all walls was characterized by buckling of steel plates as well as cracking and crushing of concrete in the most compressive zone. Nonlinear three-dimensional finite element analysis is also used to evaluate the performance of the composite wall, by using ABAQUS computer Program (version 6.13). Finite element results were compared with experimental results. The comparison shows good accuracy.

Scopus Clarivate Crossref
Publication Date
Sun Mar 01 2020
Journal Name
Sustainable Chemistry And Pharmacy
A sustainable approach to utilize olive pips for the sorption of lead ions: Numerical modeling with aid of artificial neural network
...Show More Authors

Scopus (23)
Crossref (17)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of The Mechanical Behavior Of Materials
Concrete strength development by using magnetized water in normal and self-compacted concrete
...Show More Authors
Abstract<p>The main objective of this work was to adopt an environmentally friendly technology with enhanced results. The technology of magnetic water (MW) treatment system can be used in concrete mixture production instead of potable water (PW) to improve both workability and strength. Two types of concrete were adopted: normal concreter production with two grades 25 and 35 MPa and the self-compacted concrete (SCC) with 35 MPa grade. The concrete mixes containing MW instead of PW results showed that, for 25 MPa grade, an improvement in a compressive strength of 15.1, 14.8, and 10.2% was achieved for 7, 28, and 90 days, respectively. For 35 MPa grade, an improvement of 13.6, 11.5, and </p> ... Show More
Crossref (6)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of The Mechanical Behavior Of Materials
Concrete strength development by using magnetized water in normal and self-compacted concrete
...Show More Authors
Abstract<p>The main objective of this work was to adopt an environmentally friendly technology with enhanced results. The technology of magnetic water (MW) treatment system can be used in concrete mixture production instead of potable water (PW) to improve both workability and strength. Two types of concrete were adopted: normal concreter production with two grades 25 and 35 MPa and the self-compacted concrete (SCC) with 35 MPa grade. The concrete mixes containing MW instead of PW results showed that, for 25 MPa grade, an improvement in a compressive strength of 15.1, 14.8, and 10.2% was achieved for 7, 28, and 90 days, respectively. For 35 MPa grade, an improvement of 13.6, 11.5, and </p> ... Show More
View Publication
Scopus (5)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Sat Dec 02 2017
Journal Name
Al-khwarizmi Engineering Journal
Improvement of Microhardness and Corrosion Resistance of Stainless Steel by Nanocomposite Coating
...Show More Authors

Abstract

 

Stainless steel (AISI 304) has good electrical and thermal conductivities, good corrosion resistance at ambient temperature, apart from these it is cheap and abundantly available; but has good mechanical properties such as hardness. To improve the  hardness and corrosion resistance of stainless steel its surface can be modified by developing nanocomposite coatings applied on its surface. The main objective of this paper is to study effect of electroco-deposition method on microhardness and corrosion resistance of stainless steel, and to analyze effect of nanoparticles (Al2O3, ZrO2 , and SiC)  on properties of composite coatings. I

... Show More
View Publication Preview PDF
Publication Date
Mon Oct 12 2020
Journal Name
Molecules
Phase Change Process in a Zigzag Plate Latent Heat Storage System during Melting and Solidification
...Show More Authors

Applying a well-performing heat exchanger is an efficient way to fortify the relatively low thermal response of phase-change materials (PCMs), which have broad application prospects in the fields of thermal management and energy storage. In this study, an improved PCM melting and solidification in corrugated (zigzag) plate heat exchanger are numerically examined compared with smooth (flat) plate heat exchanger in both horizontal and vertical positions. The effects of the channel width (0.5 W, W, and 2 W) and the airflow temperature (318 K, 323 K, and 328 K) are exclusively studied and reported. The results reveal the much better performance of the horizontal corrugated configuration compared with the smooth channel during both melti

... Show More
View Publication
Scopus (40)
Crossref (37)
Scopus Clarivate Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Al-khwarizmi Engineering Journal
Mechanical Properties of Burnished Steel AISI 1008
...Show More Authors

Burnishing improves fatigue strength, surface hardness and decrease surface roughness of metal because this process transforms tensile residual stresses into compressive residual stresses. Roller burnishing tool is used in the present work on low carbon steel (AISI 1008) specimens. In this work, different experiments were used to study the influence of feed parameter and speed parameter in burnishing process on fatigue strength, surface roughness and surface hardness of low carbon steel (AISI 1008) specimens. The first parameter used is feed values which were (0.6, 0.8, and 1) mm at constant speed (370) rpm, while the second parameter used is speed at values (540, 800 and 1200) rpm and at constant feed (1) mm. The results of the fatigue

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Aug 01 2022
Journal Name
Journal Of Structural Engineering
Standard Pushout Tests and Design Rules for a Bolted–Welded Hybrid Demountable Shear Connector
...Show More Authors

A bolted–welded hybrid demountable shear connector for use in deconstructable steel–concrete composite buildings and bridges was proposed. The hybrid connector consisted of a partially threaded stud, which was welded on the flange of a steel section, and a machined steel tube with compatible geometry, which was bolted on the stud. Four standard pushout tests according to Eurocode 4 were carried out to assess the shear performance of the hybrid connector. The experimental results show that the initial stiffness, shear resistance, and slip capacity of the proposed connector were higher than those of traditional welded studs. The hybrid connector was a ductile connector, according to Eurocode 4, with slip capacity higher than 6 mm. A nonli

... Show More
View Publication
Scopus (24)
Crossref (21)
Scopus Clarivate Crossref
Publication Date
Fri Apr 01 2022
Journal Name
Journal Of Engineering
Prediction of Shear Strength Parameters of Gypseous Soil using Artificial Neural Networks
...Show More Authors

The shear strength of soil is one of the most important soil properties that should be identified before any foundation design. The presence of gypseous soil exacerbates foundation problems. In this research, an approach to forecasting shear strength parameters of gypseous soils based on basic soil properties was created using Artificial Neural Networks. Two models were built to forecast the cohesion and the angle of internal friction. Nine basic soil properties were used as inputs to both models for they were considered to have the most significant impact on soil shear strength, namely: depth, gypsum content, passing sieve no.200, liquid limit, plastic limit, plasticity index, water content, dry unit weight, and initial

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Mon Apr 01 2019
Journal Name
Journal Of Engineering
Outdoor Testing of a Zig-Zag Solar Air heater with and without Artificial Roughness on Absorber Plate
...Show More Authors

In this paper, thermal performance of a zig-zig solar air heater (ZZSAH) with and without using steel wire mesh on the absorber plate of the collector is experimentally investigated. The experimental work includes four inclination angles of the collector 20o, 30o, 45o, and 60o and four air mass flow rates of 0.03, 0.04, 0.06, and 0.08 kg/s under varieties of operating conditions of a geographic location of  Baghdad. New correlation equations of Nusselt number are obtained from experimental results for both types of collectors where the effect of varying of the inclination angle of collector taken into consideration in the experiment. The correlations show good agreement wi

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Jan 01 2013
Journal Name
J. Baghdad For Sci
Numerical Simulations of Imaging Extrasolar Planets using Circular and Square Apodize Apertures
...Show More Authors

Numerical simulations are carried out to assess the quality of the circular and square apodize apertures in observing extrasolar planets. The logarithmic scale of the normalized point spread function of these apertures showed sharp decline in the radial frequency components reaching to 10-36 and 10-34 respectively and demonstrating promising results. This decline is associated with an increase in the full width of the point spread function. A trade off must be done between this full width and the radial frequency components to overcome the problem of imaging extrasolar planets.