This research is presented experimental and numerical investigations of composite concrete-steel plate shear walls under axial loads to predicate the effect of both concrete compressive strength and aspect ratio of the wall on the axial capacity, lateral displacement and axial shortening of the walls. The experimental program includes casting and testing two groups of walls with various aspect ratios. The first group with aspect ratio H/L=1.667 and the second group with aspect ratio H/L=2. Each group consists of three composite concrete -steel plate wall with three targets of cube compressive strength of values 39, 54.75 and 63.3 MPa. The tests result obtained that the increase in concrete compressive strength results in increasing the ultimate axial load capacity of the wall. Thus, the failure load, the corresponding lateral displacement and the axial shortening increased by increasing the compressive strength and the rate of increase in failure load of the tested walls was about (34.5% , 23.1%) as compressive strength increased from 39 to 63.3 MPa for case of composite wall with aspect ratio H/L=1.667 and H/L=2, respectively. The effect of increasing aspect ratio on the axial load capacity, lateral displacement and axial shortening of the walls was also studied in this study. Compared the main performance characteristic of the testing walls, it can be indicated that the walls with aspect ratio equal to (2) failed under lower axial loads as compared with walls with aspect ratio equal to 1.667 ratios by about (5.8, 12, 15.6 %) at compressive strength (39, 54.75, 63.3 MPa), respectively and experienced large flexural deformations. The mode of failure of all walls was characterized by buckling of steel plates as well as cracking and crushing of concrete in the most compressive zone. Nonlinear three-dimensional finite element analysis is also used to evaluate the performance of the composite wall, by using ABAQUS computer Program (version 6.13). Finite element results were compared with experimental results. The comparison shows good accuracy.
Objective: Evaluation of the poly ether keton keton polymer (PEKK) coating material on the commercial pure titanium disks (CP Ti) with or without laser surface structuring. Design: In vitro experimental study of PEKK polymer coated material on the CP Ti disks with or without laser surface structuring. Materials and methods: coating the surface of the commercial pure titanium (CP Ti) disks with PEKK polymer was performed via using frictional mode CO2 laser, then the samples disks analyzed by using FESEM. Results: the FESEM reveal good adherence and distribution of the PEKK coated material over the CP Ti substrate by using the frictional mode CO2 laser at 2 watt and 6 ms pulse duration. Conclusion: the frictional mode CO2 laser considered an
... Show MoreZinc oxide thin films were deposited by chemical spray pyrolysis onto glass substrates which are held at a temperature of 673 K. Some structural, electrical, optical and gas sensing properties of films were studied. The resistance of ZnO thin film exhibits a change of magnitude as the ambient gas is cycled from air to oxygen and nitrogen dioxide
The need to create the optimal water quality management process has motivated researchers to pursue prediction modeling development. One of the widely important forecasting models is the sessional autoregressive integrated moving average (SARIMA) model. In the present study, a SARIMA model was developed in R software to fit a time series data of monthly fluoride content collected from six stations on Tigris River for the period from 2004 to 2014. The adequate SARIMA model that has the least Akaike's information criterion (AIC) and mean squared error (MSE) was found to be SARIMA (2,0,0) (0,1,1). The model parameters were identified and diagnosed to derive the forecasting equations at each selected location. The correlation coefficien
... Show MoreProduction logging is used to diagnose well production problems by evaluating the flow profile, entries of unwanted fluids and downhole flow regimes. Evaluating wells production performance can be easily induce from production logs through interpretation of production log data to provide velocity profile and contribution of each zone on total production. Production logging results supply information for reservoir modeling, provide data to optimize the productivity of existing wells and plan drilling and completion strategies for future wells. Production logging was carried out in a production oil well from Mishrif formation of West Qurna field, with the objective to determine the flow profile and fluid contributions from the perforations af
... Show MoreThe aim of this study was to develop a sensor based on a carbon paste electrodes (CPEs) modified with used MIP for determination of organophosphorus pesticides (OPPs). The modified electrode exhibited a significantly increased sensitivity and selectivity of (OPPs). The MIP was prepared by thermo-polymerization method using N,N-diethylaminoethymethacrylate (NNDAA) as functional monomer, N,N-1,4-phenylenediacrylamide (NNPDA) as cross-linker, the acetonitrile used as solvent and (Opps) as the template molecule. The three OPPs (diazinon, quinalphos and chlorpyrifos) were chosen as the templates, which have been selected as base analytes which used widely in agriculture sector. The extraction efficiency of the imprinted polymers has been evaluat
... Show MoreIn this paper,the homtopy perturbation method (HPM) was applied to obtain the approximate solutions of the fractional order integro-differential equations . The fractional order derivatives and fractional order integral are described in the Caputo and Riemann-Liouville sense respectively. We can easily obtain the solution from convergent the infinite series of HPM . A theorem for convergence and error estimates of the HPM for solving fractional order integro-differential equations was given. Moreover, numerical results show that our theoretical analysis are accurate and the HPM can be considered as a powerful method for solving fractional order integro-diffrential equations.
... Show MoreHeavy metals especially lead (Pb), cadmium (Cd), chromium (Cr) and copper (Cu) are noxious pollutants with immense health hazards on living organisms, these pollutants enter aquatic environment in Iraq mainly Tigris and Euphrates rivers via waste water came from different anthropological activities, This study investigated capacity of dried and ground root of water hyacinth (Eichhornia crassipes) in removing the heavy metals from their aqueous solutions. Effects of initial concentrations of the heavy metals and pH of their aqueous solutions were studied. Results of this study revealed excellent biosorption capacity of water hyacinth root in general, removal of Pb was the highest and Cr was lowest. The results showed that the Pb, Cu and C
... Show More