This research is presented experimental and numerical investigations of composite concrete-steel plate shear walls under axial loads to predicate the effect of both concrete compressive strength and aspect ratio of the wall on the axial capacity, lateral displacement and axial shortening of the walls. The experimental program includes casting and testing two groups of walls with various aspect ratios. The first group with aspect ratio H/L=1.667 and the second group with aspect ratio H/L=2. Each group consists of three composite concrete -steel plate wall with three targets of cube compressive strength of values 39, 54.75 and 63.3 MPa. The tests result obtained that the increase in concrete compressive strength results in increasing the ultimate axial load capacity of the wall. Thus, the failure load, the corresponding lateral displacement and the axial shortening increased by increasing the compressive strength and the rate of increase in failure load of the tested walls was about (34.5% , 23.1%) as compressive strength increased from 39 to 63.3 MPa for case of composite wall with aspect ratio H/L=1.667 and H/L=2, respectively. The effect of increasing aspect ratio on the axial load capacity, lateral displacement and axial shortening of the walls was also studied in this study. Compared the main performance characteristic of the testing walls, it can be indicated that the walls with aspect ratio equal to (2) failed under lower axial loads as compared with walls with aspect ratio equal to 1.667 ratios by about (5.8, 12, 15.6 %) at compressive strength (39, 54.75, 63.3 MPa), respectively and experienced large flexural deformations. The mode of failure of all walls was characterized by buckling of steel plates as well as cracking and crushing of concrete in the most compressive zone. Nonlinear three-dimensional finite element analysis is also used to evaluate the performance of the composite wall, by using ABAQUS computer Program (version 6.13). Finite element results were compared with experimental results. The comparison shows good accuracy.
Solar distillers are a sustainable and simple solution for addressing water scarcity, but their limited productivity restricts their effectiveness. This work aimed to assess the thermal performance of a novel tracked, tilted, hexagonal tubular solar still (HTSS) of four-sectioned U-channel receiver. Two identical HTSSs were side-to-side tested in Baghdad-Iraq (33.3°N, 43.3°E) from June to September 2024. The thermal evaluation of single-axis tracking solar still, tilted at (5° to 15°) with the horizontal axis and charged with and without hydrogel beads for water depth of 60 mm. The still's thermal performance is assessed by analyzing heat transfer coefficients, energy and exergy efficiencies, as well as conducting cost and environment
... Show MoreBackground: Aesthetic archwires are used to overcome the aesthetic problems of stainless steel wires but the color of the coating layer can be changed with time when exposed to oral environments. The aim of this study was to evaluate the degree of color change of different aesthetic archwires from different companies under different coloring solutions. Materials and Methods: One hundred fifty samples of coated archwires from three companies (Highland, G&H and Dany) were immersed in 5 solutions (artificial saliva, turmeric, tea, coffee and Miranda) to evaluate the degree of color changes after 7, 14 and 21 days using visible spectrophotometer. Data were collected and analyzed using one way ANOVA and post hoc Tukey’s tests. Resu
... Show MoreCorrosion- induced damage in reinforced concrete structure such as bridges, parking garages, and buildings, and the related cost for maintaining them in a serviceable condition, is a source of major concern for the owners of these structures.
Fly ash produced from south Baghdad power plant with different concentrations (20, 25 and 30) % by weight from the cement ratio were used as a corrosion inhibitor as a weight ratio from the cement content.
The concrete batch ratio under study was (1:1.5:3) cement, sand and gravel respectively which is used in Iraq. All the raw materials used were locally manufactured.
Concrete slabs (250x250x70) mm dimensions were casted, using Poly-wood molds. Two steel bars were embedded in the central po
Background: The study was designed to evaluate the effect of local application of exogenous VEGF/collagen I separately and as a combination in socket healing. Sixty male Albino Wistar rats were subjected for a surgical tooth extraction of upper 1st molar of both sides (right side was considered as experimental site, while left be the control one, treated with 1µL of normal saline). The rats were scarified at 3, 7, 14, 28 days post extraction. Socket healing was histologically examined with immunohistochemistochemical localization of ALP&FGF2. Materials and Method: Sixty male Albino Wistar rats were subjected for a surgical tooth extraction of upper 1stmolar of both sides (right side was considered as experimental site, while left be the
... Show MoreAbstract
Heavy-duty diesel vehicle idling consumes fossil fuel and reduces atmospheric quality at idle period, but its restriction cannot simply be proscribed. A comprehensive tailpipe emissions database to describe idling impacts is not yet available. This paper presents a substantial data set that incorporates results from DI multi-cylinders Fiat diesel engine. Idle emissions of CO, hydrocarbon (HC), oxides of nitrogen (NOx), smoke opacity, carbon dioxide (CO2) and noise have been reported, when three EGR ratios (10, 20 and 30%) were added to suction manifold.
CO2 concentrations increased with increasing idle time and engine idle speed, but it didn’t show clear effect for IT adva
... Show MoreIn the recent decade, injection of nanoparticles (NPs) into underground formation as liquid nanodispersions has been suggested as a smart alternative for conventional methods in tertiary oil recovery projects from mature oil reservoirs. Such reservoirs, however, are strong candidates for carbon geo-sequestration (CGS) projects, and the presence of nanoparticles (NPs) after nanofluid-flooding can add more complexity to carbon geo-storage projects. Despite studies investigating CO2 injection and nanofluid-flooding for EOR projects, no information was reported about the potential synergistic effects of CO2 and NPs on enhanced oil recovery (EOR) and CGS concerning the interfacial tension (γ) of CO2-oil system. This study thus extensively inves
... Show MoreThe object of research is studying Raman scattering technique, photoluminescence and some optical properties of silver nanoparticles created by eco-friendly technique which independent on a long time, effort, energy and high temperatures, and with the highest adsorption capacity in order to achieve a high inhibition to paralyze the activity of the bacterial wall, by achieving the highest surface plasmon resonance (SRR). Silver nanoparticles were prepared using Matricaria Flower extract. Characterization of silver nanoparticles and detection of their effectiveness against microbial using two types of bacteria (Escherichia Coli and Staphylococcus aureus ), these nanoparticles were measured using a number of measurements, X-ray diffrac
... Show MoreThis study experimentally investigated Free-Fall Gravity Drainage (FFGD) under combination-drive conditions in a two-dimensional Hele-Shaw model representing a water-drive reservoir. An initially high gravity potential from the oil column enabled early oil drainage before aquifer support became dominant. Three water-drive strengths were tested, demonstrating that a stronger aquifer (1.15 psig) accelerated oil recovery to approximately 75% of the original oil in place (OOIP) within 60 minutes, resulting in a final recovery of 79.5%. However, this was accompanied by rapid water breakthrough after 2.5 minutes and high-water cuts exceeding 90%. In contrast, a weaker aquifer (0.725 psig) stabilized the oil–water contact, delaying w
... Show More