Many diseases can produce cardiac overload, of these disease hypertension, valve disease congenital anomaly in addition to many other disease. One of the most common diseases causing left ventricle overload is hypertension. A long term hypertension can cause myocardium hypertrophy leading to changes in the cardiac contractility and reduced efficiency. The investigations were carried out using conventional echocardiography techniques in addition to the tissue Doppler imaging (TDI) from which many noninvasive measurements can be readily obtained. The study has involved the effect of hypertension on the myocardium stiffness index through the measurement of early diastolic filling (E) and the early velocity of lateral mitral annulus (Ea) from which left ventricle filling pressure can be obtained. Our aim was to investigate the changes in the myocardium index of diastolic stiffness using TDI for patients suffering from systemic hypertension. We studied 263 hypertensive patients (105 males and 158 females of average age of 54.07± 12.7) and 166 healthy subjects (age range 40.06± 12.8,53 males and 113 females) as a control group. Measurements were carried out using tissue Doppler imaging (TDI) of the mitral annulus in addition to other echocardiographic measurements for the assessment of left ventricle end diastolic dimension (LVEDD), Doppler peak early (E) and late (A) diastolic filling velocities. Results reveal that mitral annular early diastolic velocity (Ea) measured by TDI, that (Ea) was significantly lower for the hypertensive group in comparison with the control group (Ea 9.81 ± 2.87 cm/s for hypertensive vs. 12.90 ± 2.395 cm/s for control p value <0.001. Hypertensive group also showed a significantly higher mitral annular late diastolic velocity (Aa) in comparison with control group as Aa 11.21 ± 2.504 cm/s for hypertensive vs. 9.787 ±2.201cm/s for control, p value <0.001.. In conclusion, LV myocardial diastolic stiffness index is increased in hypertensive patients.
In this research, rabbit femurs were implanted with CP Ti screws coated with a combination of CaCO3 and nanohydroxyapatite, and the effect on osseointegration was assessed using histological and histomorphometric examination at 2 and 6 weeks. CaCO3 and nanohydroxyapatite were combined with the EPD to coat the surfaces of the CP Ti screws. The femurs of five male rabbits were implanted with coated and uncoated implant screws. Healing time was divided into two groups (2 and 6 weeks). After 2 and 6 weeks of implantation, the histological examination revealed an increase in the growth of bone cells for coated screws, and the histomorphometric analysis revealed an increase in the percentage of ne
... Show MoreThis study introduces a highly sensitive trapezium-shaped PCF based on an SPR refractometric sensor with unique design features. The structure of a sensor was designed and analyzed using COMSOL Multiphysics v5.6 based on Finite Element Method (FEM) with a focus on investigating the influence of various geometric parameters on its performance. The two channels were coated with a metallic gold layer to provide chemical stability, and a thin layer of TiO₂ improved the gold's adhesion to the fiber. The findings indicate that the proposed sensor achieves maximum amplitude and wavelength sensitivities of 1,779 RIU⁻¹ and 30,500 nm/RIU, respectively, with corresponding resolutions of 3.2
In this research, an organobentonite (HDTMA-BT) was prepared by modifying a jordanian bentonite (BT) with hexadecyltrimethylammonium bromide. By means of in situ free radical polymerization in THF with AIBN as the initiator, this organobentonite is used to prepare the polymethylmethacrylate-bentonite (PMA-HDTMA-BT) nanocomposite. Scanning electron microscopy (SEM), x-ray diffraction (XRD), energy dispersive spectrometer (EDS) and Fourier transform infrared (FTIR) spectroscopy were used to characterize both HDTMA-BT and PMA-HDTMA-BT. Those adsorbents were used in a batch process to remove Pb(II), Cr(III) ions, and p-chlorophenol (PCP) from aqueous solution. Investigated factors included adsorbent dosage, initial pH solution, contact time, an
... Show MoreThe growing demand for sustainable and high-performance asphalt binders has prompted the exploration of waste-derived modifiers. This study investigates the performance enhancement of Natural Asphalt (NA) using Sugarcane Molasses (SM) and Waste Engine Oil (WEO). The modified blends were prepared by partially replacing 50 % NA with varying proportions of SM and WEO ranging from 10 % to 40 % of the total weight of NA. Comprehensive testing was conducted, including penetration, softening point, ductility, viscosity, Bending Beam Rheometer (BBR), Multiple Stress Creep Recovery (MSCR), Energy Dispersive X-ray Spectroscopy (EDX), Fourier Transform Infrared (FTIR) spectroscopy, and Scanning Electron Microscopy (SEM). The results demonstrated that
... Show MoreThere is an interesting potential for the use of GFRP-pultruded profiles in hybrid GFRP-concrete structural elements, either for new constructions or for the rehabilitation of existing structures. This paper provides experimental and numerical investigations on the flexural performance of reinforced concrete (RC) specimens composite with encased pultruded GFRP I-sections. Five simply supported composite beams were tested in this experimental program to investigate the static flexural behavior of encased GFRP beams with high-strength concrete. Besides, the effect of using shear studs to improve the composite interaction between the GFRP beam and concrete as well as the effect of web stiffeners of GFRP were explored. Encasing the GFRP
... Show MoreGenerally fossil based fuels are used in internal combustion engines as an energy source.
Excessive use of fossil based fuels diminishes present reserves and increases the air pollution in
urban areas. This enhances the importance of the effective use of present reserves and/or to develop
new alternative fuels, which are environment friendly. Use of alternative fuel is a way of emission
control. The term “Alternative Gaseous Fuels” relates to a wide range of fuels that are in the
gaseous state at ambient conditions, whether when used on their own or as components of mixtures
with other fuels.
In this study, a single cylinder diesel engine was modified to use LPG in dual fuel mode to study
the performance, emis