Preferred Language
Articles
/
lBcMVJIBVTCNdQwCFqvY
Control System Development of Cap-Seal Assembling Machine
...Show More Authors

   

Scopus Crossref
View Publication
Publication Date
Fri Jul 01 2022
Journal Name
Iop Conference Series: Earth And Environmental Science
A study Some Technical Indicators Under Impact Tillage Depth and Disk harrow Angle of the Compound Machine
...Show More Authors
Abstract<p>The research included studying the effect of different plowing depths (10,20and30) cm and three angles of the disc harrows (18,20and25) when they were combined in one compound machine consisting of a triple plow and disc harrows tied within one structure. Draft force, fuel consumption, practical productivity, and resistance to soil penetration. The results indicated that the plowing depth and disc angle had a significant effect on all studied parameters. The results showed that when the plowing depth increased and the disc angle increased, leads to increased pull force ratio, fuel consumption, resistance to soil penetration, and reduce the machine practical productivity.</p>
View Publication
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Mon Apr 07 2025
Journal Name
Al-nahrain Journal For Engineering Sciences
Navigating the Challenges and Opportunities of Tiny Deep Learning and Tiny Machine Learning in Lung Cancer Identification
...Show More Authors

Lung cancer is the most common dangerous disease that, if treated late, can lead to death. It is more likely to be treated if successfully discovered at an early stage before it worsens. Distinguishing the size, shape, and location of lymphatic nodes can identify the spread of the disease around these nodes. Thus, identifying lung cancer at the early stage is remarkably helpful for doctors. Lung cancer can be diagnosed successfully by expert doctors; however, their limited experience may lead to misdiagnosis and cause medical issues in patients. In the line of computer-assisted systems, many methods and strategies can be used to predict the cancer malignancy level that plays a significant role to provide precise abnormality detectio

... Show More
View Publication
Scopus Crossref
Publication Date
Thu Sep 14 2023
Journal Name
Al-khwarizmi Engineering Journal
Applying Scikit-learn of Machine Learning to Predict Consumed Energy in Al-Khwarizmi College of Engineering, Baghdad, Iraq
...Show More Authors

Globally, buildings use about 40% of energy. Many elements, such as the physical properties of the structure, the efficiency of the cooling and heating systems, the activity of the occupants, and the building’s sustainability, affect the energy consumption of a building. It is really difficult to predict how much energy a building will need. To improve the building’s sustainability and create sustainable energy sources to reduce carbon dioxide emissions from fossil fuel combustion, estimating the building's energy use is necessary. This paper explains the energy consumed in the lecture building of the Al-Khwarizmi College of Engineering, University of Baghdad (UOB), Baghdad, Iraq. The weather data and the building construction informati

... Show More
Publication Date
Fri Aug 13 2021
Journal Name
Neural Computing And Applications
Integration of extreme gradient boosting feature selection approach with machine learning models: application of weather relative humidity prediction
...Show More Authors

View Publication
Scopus (64)
Crossref (55)
Scopus Clarivate Crossref
Publication Date
Thu Jun 25 2020
Journal Name
International Journal Of Drug Delivery Technology
Development of a Simple Colorimetric Determination of Dexamethasone
...Show More Authors

A simple, environmentally benign, cost-effective, and sensitive colorimetric determination for the pharmaceutical drug dexamethasone sodium phosphate (DXP) has been developed by the formation of a colored complex with fluoranil. The process was sensitive and linear over the range 1 to 40 μg/mL, excellent correlation coefficient 0.9989, recovery% 99.80 ± 1.3, limit of detection (LOD) and limit of quantification (LOQ) were 0.23 and 0.9 μg/mL, respectively, and good RSD ~1.63%. The experimental conditions were optimized after an intensive study. The approach was validated statistically for the quantification of the analyte in its pure and/or pharmaceutical form. Despite the proposed approach is selective, it still can be applied for

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (3)
Scopus Crossref
Publication Date
Wed Dec 30 2020
Journal Name
Journal Of Planner And Development
Foresight of the development of the housing sector
...Show More Authors

The housing sector in Iraq has suffered from multiple problems, the most prominent of which is the failure of the housing market to achieve housing production that faces population increases and a high number of households.

The research aims to foresight the future of the housing sector,  and to identify the expectations of experts in the development of the housing sector and housing production, in order to overcome the obstacles and problems.

Foresight does not mean forecasting about future events, but rather it is a process and skill aimed at familiarity with providing sufficient knowledge to achieve the desired future goals, Accordingly, adopting a method of future foresight will reduce error,  surprise and s

... Show More
View Publication Preview PDF
Publication Date
Wed Dec 01 2021
Journal Name
Civil And Environmental Engineering
Developing A Mathematical Model for Planning Repetitive Construction Projects By Using Support Vector Machine Technique
...Show More Authors
Abstract<p>Each project management system aims to complete the project within its identified objectives: budget, time, and quality. It is achieving the project within the defined deadline that required careful scheduling, that be attained early. Due to the nature of unique repetitive construction projects, time contingency and project uncertainty are necessary for accurate scheduling. It should be integrated and flexible to accommodate the changes without adversely affecting the construction project’s total completion time. Repetitive planning and scheduling methods are more effective and essential. However, they need continuous development because of the evolution of execution methods, essent</p> ... Show More
View Publication
Crossref (3)
Clarivate Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Ieee Access
Keratoconus Severity Detection From Elevation, Topography and Pachymetry Raw Data Using a Machine Learning Approach
...Show More Authors

View Publication
Scopus (18)
Crossref (16)
Scopus Clarivate Crossref
Publication Date
Wed Mar 20 2024
Journal Name
Journal Of Petroleum Research And Studies
Advanced Machine Learning application for Permeability Prediction for (M) Formation in an Iraqi Oil Field
...Show More Authors

Permeability estimation is a vital step in reservoir engineering due to its effect on reservoir's characterization, planning for perforations, and economic efficiency of the reservoirs. The core and well-logging data are the main sources of permeability measuring and calculating respectively. There are multiple methods to predict permeability such as classic, empirical, and geostatistical methods. In this research, two statistical approaches have been applied and compared for permeability prediction: Multiple Linear Regression and Random Forest, given the (M) reservoir interval in the (BH) Oil Field in the northern part of Iraq. The dataset was separated into two subsets: Training and Testing in order to cross-validate the accuracy

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Dec 20 2021
Journal Name
Baghdad Science Journal
Recurrent Stroke Prediction using Machine Learning Algorithms with Clinical Public Datasets: An Empirical Performance Evaluation
...Show More Authors

Recurrent strokes can be devastating, often resulting in severe disability or death. However, nearly 90% of the causes of recurrent stroke are modifiable, which means recurrent strokes can be averted by controlling risk factors, which are mainly behavioral and metabolic in nature. Thus, it shows that from the previous works that recurrent stroke prediction model could help in minimizing the possibility of getting recurrent stroke. Previous works have shown promising results in predicting first-time stroke cases with machine learning approaches. However, there are limited works on recurrent stroke prediction using machine learning methods. Hence, this work is proposed to perform an empirical analysis and to investigate machine learning al

... Show More
View Publication Preview PDF
Scopus (12)
Crossref (6)
Scopus Clarivate Crossref