Beyond the immediate content of speech, the voice can provide rich information about a speaker's demographics, including age and gender. Estimating a speaker's age and gender offers a wide range of applications, spanning from voice forensic analysis to personalized advertising, healthcare monitoring, and human-computer interaction. However, pinpointing precise age remains intricate due to age ambiguity. Specifically, utterances from individuals at adjacent ages are frequently indistinguishable. Addressing this, we propose a novel, end-to-end approach that deploys Mozilla's Common Voice dataset to transform raw audio into high-quality feature representations using Wav2Vec2.0 embeddings. These are then channeled into our self-attention-based convolutional neural network (CNN) model. To address age ambiguity, we evaluate the effects of different loss functions such as focal loss and Kullback-Leibler (KL) divergence loss. Additionally, we evaluate the accuracy of the estimation at different durations of speech. Experimental results from the Common Voice dataset underscore the efficacy of our approach, showcasing an accuracy of 87% for male speakers, 91% for female speakers and 89% overall accuracy, and an accuracy of 99.1% for gender prediction.
Wireless networks and communications have witnessed tremendous development and growth in recent periods and up until now, as there is a group of diverse networks such as the well-known wireless communication networks and others that are not linked to an infrastructure such as telephone networks, sensors and wireless networks, especially in important applications that work to send and receive important data and information in relatively unsafe environments, cybersecurity technologies pose an important challenge in protecting unsafe networks in terms of their impact on reducing crime. Detecting hacking in electronic networks and penetration testing. Therefore, these environments must be monitored and protected from hacking and malicio
... Show MoreFinding communities of connected individuals in complex networks is challenging, yet crucial for understanding different real-world societies and their interactions. Recently attention has turned to discover the dynamics of such communities. However, detecting accurate community structures that evolve over time adds additional challenges. Almost all the state-of-the-art algorithms are designed based on seemingly the same principle while treating the problem as a coupled optimization model to simultaneously identify community structures and their evolution over time. Unlike all these studies, the current work aims to individually consider this three measures, i.e. intra-community score, inter-community score, and evolution of community over
... Show MoreBackground: Legionella pneumophila (L. pneumophila) is gram-negative bacterium, which causes Legionnaires’ disease as well as Pontiac fever. Objective: To determine the frequency of Legionella pneumophila in pneumonic patients, to determine the clinical utility of diagnosing Legionella pneumonia by urinary antigen testing (LPUAT) in terms of sensitivity and specificity, to compares the results obtained from patients by urinary antigen test with q Real Time PCR (RT PCR) using serum samples and to determine the frequency of serogroup 1 and other serogroups of L. pneumophila. Methods: A total of 100 pneumonic patients (community acquired pneumonia) were enrolled in this study during a period between October 2016 to April 2017; 92 sam
... Show MoreGastrointestinal diseases and especially chronic gastritis are mainly induced by Helicobacter pylori infection, and provides the basis for gastric carcinogenesis and colorectal cancer. The study involved the detection of serum anti-H. pylori IgG and IgA antibody of and some serum biomarkers ;CEA and CA19-9 in patients with gastrointestinal diseases. Fifty eight serum samples were collected from 25 males and 33 females .Peripheral venous blood was collected from each patient and sera obtained by centrifugation. Serum anti-H. pylori IgG and IgA ,serum CEA and CA19-9 were evaluated by enzyme-linked immunoadsorbent assays (ELISA).Forty eight serum samples were positive for IgG (82.7% ) divided int
... Show MoreПредметом нашего исследования является вводные слова и их значения в современном русском языке. И прежде чем углубиться в нашу научную работу нам было необходимо определить понятие вводных слов и их функция и место в системе русского языка. По словам В. Г. Лебедева и Л. С. Тюревы "Вводные слова вводятся в предложении, чтобы выражать отношение говорящего к высказываемой мысли, оценки ее содержа
... Show MoreAir pollution refers to the release of pollutants into the air that are detrimental to human health and the planet as a whole.In this research, the air pollutants concentration measurements such as Total Suspended Particles(TSP), Carbon Monoxides(CO),Carbon Dioxide (CO2) and meteorological parameters including temperature (T), relative humidity (RH) and wind speed & direction were conducted in Baghdad city by several stations measuring numbered (22) stations located in different regions, and were classified into (industrial, commercial and residential) stations. Using Arc-GIS program ( spatial Analyses), different maps have been prepared for the distribution of different pollutant
This study aimed to incorporate hydroxyapatite nanoparticles (nHA) or amorphous calcium phosphate nanoparticles (nACP) into a self-etch primer (SEP) to develop a simplified orthodontic bonding system with remineralizing and enamel preserving properties.
nHA and nACP were incorporated into a commercial SEP (Transbond™ plus) in 7% weight ratio and compared with the plain SEP as a control. Shear bond strengths (SBS), enamel damage, and adhesive remnant index (ARI) scores were evaluated at 24 h
Detection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with
... Show MorePDBN Rashid, International Journal of Development in Social Sciences and Humanities, 2023