Beyond the immediate content of speech, the voice can provide rich information about a speaker's demographics, including age and gender. Estimating a speaker's age and gender offers a wide range of applications, spanning from voice forensic analysis to personalized advertising, healthcare monitoring, and human-computer interaction. However, pinpointing precise age remains intricate due to age ambiguity. Specifically, utterances from individuals at adjacent ages are frequently indistinguishable. Addressing this, we propose a novel, end-to-end approach that deploys Mozilla's Common Voice dataset to transform raw audio into high-quality feature representations using Wav2Vec2.0 embeddings. These are then channeled into our self-attention-based convolutional neural network (CNN) model. To address age ambiguity, we evaluate the effects of different loss functions such as focal loss and Kullback-Leibler (KL) divergence loss. Additionally, we evaluate the accuracy of the estimation at different durations of speech. Experimental results from the Common Voice dataset underscore the efficacy of our approach, showcasing an accuracy of 87% for male speakers, 91% for female speakers and 89% overall accuracy, and an accuracy of 99.1% for gender prediction.
It is the regression analysis is the foundation stone of knowledge of statistics , which mostly depends on the ordinary least square method , but as is well known that the way the above mentioned her several conditions to operate accurately and the results can be unreliable , add to that the lack of certain conditions make it impossible to complete the work and analysis method and among those conditions are the multi-co linearity problem , and we are in the process of detected that problem between the independent variables using farrar –glauber test , in addition to the requirement linearity data and the lack of the condition last has been resorting to the
... Show MoreDigital change detection is the process that helps in determining the changes associated with land use and land cover properties with reference to geo-registered multi temporal remote sensing data. In this research change detection techniques have been employed to detect the changes in marshes in south of Iraq for two period the first one from 1973 to 1984 and the other from 1973 to 2014 three satellite images had been captured by land sat in different period. Preprocessing such as geo-registered, rectification and mosaic process have been done to prepare the satellite images for monitoring process. supervised classification techniques such maximum likelihood classification has been used to classify the studied area, change detection aft
... Show MoreWith the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vect
... Show MoreECG is an important tool for the primary diagnosis of heart diseases, which shows the electrophysiology of the heart. In our method, a single maternal abdominal ECG signal is taken as an input signal and the maternal P-QRS-T complexes of original signal is averaged and repeated and taken as a reference signal. LMS and RLS adaptive filters algorithms are applied. The results showed that the fetal ECGs have been successfully detected. The accuracy of Daisy database was up to 84% of LMS and 88% of RLS while PhysioNet was up to 98% and 96% for LMS and RLS respectively.
The Present research aimed at identifying:
1- The level of environmental stress among preparatory students
2- The level of self-rebellion among preparatory students
3- The correlation between the two variables of research (environmental stress and self-rebellion) and the extent to which the independent variable contributes to the variable of the middle school students.
The current research has determined the students of the fifth stage of the preparatory stage and all the branches in the departments of education in Baghdad province the morning study for the academic
... Show MoreValue Engineering is an analytical study on projects or services using a specific procedure and a multidisciplinary working group, works for the identification and classification of the project functions; either for a better perfuming of these functions or to lessen the total project cost or the two together. Value Engineering main aim is on finding innovative alternatives, without effecting the basic requirements of the project, its methodology based on the functional balancing between the three elements of production "performance, quality and cost". This methodology based on the "functional analysis", had shown high possibilities in solving any problem facing the production procedure , achieve better investment for available re
... Show MoreThe primary aim of this research was to study visual spatial attention and its impact on the accuracy of the diagonal spike in volleyball. A total of 20 volleyball players of Baghdad participated in this study. The sample was homogeneous in terms of height, weight and age of the players. The tests used in the present study were: 1) Visual Spatial Attention Test. 2) Volleyball Spike Test. Based on the findings of the study, the researcher concluded that visual spatial attention has a significant impact on the accuracy of the diagonal spike in volleyball.
Shadow removal is crucial for robot and machine vision as the accuracy of object detection is greatly influenced by the uncertainty and ambiguity of the visual scene. In this paper, we introduce a new algorithm for shadow detection and removal based on different shapes, orientations, and spatial extents of Gaussian equations. Here, the contrast information of the visual scene is utilized for shadow detection and removal through five consecutive processing stages. In the first stage, contrast filtering is performed to obtain the contrast information of the image. The second stage involves a normalization process that suppresses noise and generates a balanced intensity at a specific position compared to the neighboring intensit
... Show More