The high carbon dioxide emission levels due to the increased consumption of fossil fuels has led to various environmental problems. Efficient strategies for the capture and storage of greenhouse gases, such as carbon dioxide are crucial in reducing their concentrations in the environment. Considering this, herein, three novel heteroatom-doped porous-organic polymers (POPs) containing phosphate units were synthesized in high yields from the coupling reactions of phosphate esters and 1,4-diaminobenzene (three mole equivalents) in boiling ethanol using a simple, efficient, and general procedure. The structures and physicochemical properties of the synthesized POPs were established using various techniques. Field emission scanning electron microscopy (FESEM) images showed that the surface morphologies of the synthesized POPs were similar to coral reefs. They had grooved networks, long range periodic macropores, amorphous surfaces, and a high surface area (SBET = 82.71–213.54 m2/g). Most importantly, they had considerable carbon dioxide storage capacity, particularly at high pressure. The carbon dioxide uptake at 323 K and 40 bar for one of the POPs was as high as 1.42 mmol/g (6.00 wt %). The high carbon dioxide uptake capacities of these materials were primarily governed by their geometries. The POP containing a meta-phosphate unit leads to the highest CO2 uptake since such geometry provides a highly distorted and extended surface area network compared to other POPs.
The current study aimed the syntheses and characterizations of Gold nanoparticles (Au NPs) using a laser ablation Q-switched Nd: YAG laser with a wave-length of 355 nm at a variety of laser pulse energies (E) and deposited on porous silicon (PS). Optical emission spectrometer was used to diagnosed medium air to study gold plasma characteristics and prepared Au nanoparticles. The laser pulse energy influence has been studied on the plasma characteristics in air. The data showed the emergence of the ionic (Au II) spectral emission lines in the gold plasma emission spectrum. XRD has been utilized to examine structural characteristics. Moreover, AFM results 37.2 nm as the mean value of the diameter that is coordinated in a shape similar to the
... Show MoreFolic acid and multivitamin tablets containing Aspergillus flavus Penicillia spp. and Cladosporia spores were prepared at a compression pressure of 148 MN/m2 and stored at 35°C under different relative humidifies (75,85, and 95)% within air tight containers, to study the effect of storage condition on them, as well as ,the estimation of the microbial level of the raw materials intended to be used in the two kinds of tablets . Result showed that some raw materials derived from natural origin were heavily contaminated with microorganism compared to that of synthetic origin ,the results also indicated the effect of relative humidity , types of fungal spore , and the hygroscopic nature of exicpient upon survival. Multivit
... Show MoreThe current study is considered a field study to measure the level of satisfaction of the academic programs of Media Masters students. That was accomplished through surveying the attitudes of the students who are enrolled in the faculties of media at the following universities: (Petra University, The Middle East University (MEU), and Al-Yarmouk University). Those students were enrolled in the master’s program within the formal educational system during the second semester of the academic year (2015 – 2016). This survey aims to identify the services, facilities and academic programs provided by the concerned faculties. It, also, aims to identify the public relations, administrative, educational and services aspects of those faculties.
... Show MoreThe cost‐effective dual functions zeolite‐carbon composite (DFZCC) was prepared using an eco‐friendly substrate prepared from bio‐waste and an organic adhesive at intermediate conditions. The green synthesis method used in this study ensures that chemically harmless compounds are used to obtain a homogeneous distribution of zeolite over porous carbon. The greenly prepared dual‐function composite was extensively characterized using Fourier transform infrared, X‐ray diffraction, thermogravimetric analysis, N2 adsorption/desorption isotherms, field emission scanning electron microscope, dispersive analysis by X‐ray, and point of zero charges. DFZCC had a surface area o
In this research, the mechanism of cracks propagation for epoxy/ chopped carbon fibers composites have been investigated .Carbon fibers (5%, 10%, 15%, and 20%) by weight were used to reinforce epoxy resin. Bending test was carried out to evaluate the flexural strength in order to explain the mechanism of cracks propagation. It was found that, the flexural strength will increase with increasing the percentage weight for carbon fibers. At low stresses, the cracks will state at the lower surface for the specimen. Increasing the stresses will accelerate the speed of cracks until fracture accorded .The path of cracks is changed according to the distributions of carbon fibers
This work is devoted to study the properties of the ground states such as the root-mean square ( ) proton, charge, neutron and matter radii, nuclear density distributions and elastic electron scattering charge form factors for Carbon Isotopes (9C, 12C, 13C, 15C, 16C, 17C, 19C and 22C). The calculations are based on two approaches; the first is by applying the transformed harmonic-oscillator (THO) wavefunctions in local scale transformation (LST) to all nuclear subshells for only 9C, 12C, 13C and 22C. In the second approach, the 9C, 15C, 16C, 17C and 19C isotopes are studied by dividing the whole nuclear system into two parts; the first is the compact core part and the second is the halo part. The core and halo parts are studied using the
... Show Moreالخلاصة
تعد الانتخابات بمثابة الطريق المؤدي إلى الديمقراطية كونها النمط الأكثر شيوعاً لمشاركة المواطنين في الحياة السياسية للبلدان واختيار ممثليهم في المجالس التشريعية، حيث أن مطلب إجراء انتخابات حرة ونزيهة لم يعد مطلباً داخلياً فحسب بل مطلباً دولياً يصرّ المجتمع الدولي على الوفاء به وهذا يلقي على عاتق كل دولة أن تضع من الضمانات ما يكفل ممارسة هذه الانتخابات ب
... Show MoreImage databases are increasing exponentially because of rapid developments in social networking and digital technologies. To search these databases, an efficient search technique is required. CBIR is considered one of these techniques. This paper presents a multistage CBIR to address the computational cost issues while reasonably preserving accuracy. In the presented work, the first stage acts as a filter that passes images to the next stage based on SKTP, which is the first time used in the CBIR domain. While in the second stage, LBP and Canny edge detectors are employed for extracting texture and shape features from the query image and images in the newly constructed database. The p
HM Al-Dabbas, RA Azeez, AE Ali, IRAQI JOURNAL OF COMPUTERS, COMMUNICATIONS, CONTROL AND SYSTEMS ENGINEERING, 2023
Porous materials play an important role in creating a sustainable environment by improving wastewater treatment's efficacy. Porous materials, including adsorbents or ion exchangers, catalysts, metal–organic frameworks, composites, carbon materials, and membranes, have widespread applications in treating wastewater and air pollution. This review examines recent developments in porous materials, focusing on their effectiveness for different wastewater pollutants. Specifically, they can treat a wide range of water contaminants, and many remove over 95% of targeted contaminants. Recent advancements include a wider range of adsorption options, heterogeneous catalysis, a new UV/H2O