A novel demountable shear connector for precast steel-concrete composite bridges is presented. The connector uses high-strength steel bolts, which are fastened to the top flange of the steel beam with the aid of a special locking nut configuration that prevents bolts from slipping within their holes. Moreover, the connector promotes accelerated construction and overcomes the typical construction tolerance issues of precast structures. Most importantly, the connector allows bridge disassembly. Therefore, it can address different bridge deterioration scenarios with minimum disturbance to traffic flow including the following: (1) precast deck panels can be rapidly uplifted and replaced; (2) connectors can be rapidly removed and replaced; and (3) steel beams can be replaced, whereas precast decks and shear connectors can be reused. A series of push-out tests are conducted to assess the behavior of the connector and quantify the effect of important parameters. The experimental results show shear resistance, stiffness, and slip capacity significantly higher than those of welded shear studs along with superior stiffness and strength against slab uplift. Identical tests reveal negligible scatter in the shear load-slip displacement behavior. A design equation is proposed to predict the shear resistance with absolute error less than 8%.
The removal of congo red (CR) is a critical issue in contemporary textile industry wastewater treatment. The current study introduces a combined electrochemical process of electrocoagulation (EC) and electro-oxidation (EO) to address the elimination of this dye. Moreover, it discusses the formation of a triple composite of Co, Mn, and Ni oxides by depositing fixed salt ratios (1:1:1) of these oxides in an electrolysis cell at a constant current density of 25 mA/cm2. The deposition ended within 3 hours at room temperature. X-ray diffractometer (XRD), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and energy dispersive X-ray (EDX) characterized the structural and surface morphology of the multi-oxide sedim
... Show MoreThis research involves studying the mechanical properties and corrosion behavior of “low carbon steel” (0.077wt% C) before and after welding using Arc, MIG and TIG welding. The mechanical properties include testing of microhardness, tensile strength, the results indicate that microhardness of TIG, MIG welding is more than arc welding, while tensile strength in arc welding more than TIG and MIG.
The corrosion behavior of low carbon weldments was performed by potentiostat at scan rate 3mV.sec-1 in 3.5% NaCl to show the polarization resistance and calculate the corrosion rate from data of linear polarization by “Tafel extrapolation method”. The results indicate that the TIG welding increase the corrosion current d
... Show MoreThe corrosion behavior of copper and carbon steel in 1M concentration of hydrochloric acid (HCl) and sulphuric acid (H2SO4) has been studied. The corrosion inhibition of copper and carbon steel in 1M concentration of hydrochloric acid (HCl) and sulphuric acid (H2SO4) by Ciprofloxacin has been investigated. Specimens were exposed in the acidic media for 7 hours and corrosion rates evaluated by using the weight loss method. The effect of temperature (from 283 ºK to 333 ºK), pH (from 1to 6), inhibitor concentration (10-4 to 10-2) has been studied. It was observed that sulphuric acid environment was most corrosive to the metals because of its oxidizing nature, followed by hydrochloric acid. The rate of metal dissolution increased with incre
... Show MoreThe present study deals with the optimum design of self supporting steel communication towers. A special technique is used to represent the tower as an equivalent hollow tapered beam with variable cross section. Then this method is employed to find the best layout of the tower among prespecified configurations. The formulation of the problem is applied to four types of tower layout
with K and X brace, with equal and unequal panels. The objective function is the total weight of the tower. The variables are the base and the top dimensions, the number of panels for the tower and member's cross section areas. The formulations of design constraints are based on the requirements of EIA and ANSI codes for allowable stresses in the members
This research is devoted to study the strengthening technique for the existing reinforced concrete beams using external post-tensioning. An analytical methodology is proposed to predict the value of the effective prestress force for the external tendons required to close cracks in existing beams. The external prestressing force required to close cracks in existing members is only a part from the total strengthening force.
A computer program created by Oukaili (1997) and developed by Alhawwassi (2008) to evaluate curvature and deflection for reinforced concrete beams or internally prestressed concrete beams is modified to evaluate the deflection and the stress of the external tendons for the externally strengthened beams using Matlab
The compound 2,2'-(((1H-benzo(d)imidazol-2-yl)methyl)azanediyl)bis(ethan-1-ol) was reacted with benzyl bromide to afford compound (1) which used as row material to prepare a series of compounds through condensation reaction, the starting compound were reacted with tosyl chloride to protect the OH group to afford compound 2, then reacted benzyl bromide to produce compound (2), then the compound (2) treated with three compounds ( 2-mercaptobenzthiazole, 2-mercaptobenimidazol and 2-chloromethyl benzimidazole) to form compounds 3a,b, 4a,b and 5a,b respectively. In the another step the click reaction of compound 2,2'-(((1H-benzo(d)imidazol-2-yl)methyl)azanediyl)bis(ethan-1-ol) with Propargyl bromide produce compound 6 which reacted
... Show MoreA theoretical and protection study was conducted of the corrosion behavior of carbon steel surface with different concentrations of the derivative (Quinolin-2-one), namly (1-Amino-4,7-dimethyl-6-nitro-1H-quinolin-2-one (ADNQ2O)). Theoretically, Density Functional Theory (DFT) of B3LYP/ 6-311++G (2d, 2p) level was used to calculate the optimized geometry, physical properties and chemical inhibition parameters, with the local reactivity to predict both the reactive centers and to locate the possible sites of nucleophilic and electrophilic attacks, in vacuum, and in two solvents (DMSO and H2O), all at the equilibrium geometry. Experimentally, the inhibition efficiencies (%IE) in the saline solution (of 3.5%) NaCl were st
... Show MorePeriodontitis is a multifactorial chronic inflammatory disease that affects tooth-supporting soft/hard tissues of the dentition. The dental plaque biofilm is considered as a primary etiological factor in susceptible patients; however, other factors contribute to progression, such as diabetes and smoking. Current management utilizes mechanical biofilm removal as the gold standard of treatment. Antibacterial agents might be indicated in certain conditions as an adjunct to this mechanical approach. However, in view of the growing concern about bacterial resistance, alternative approaches have been investigated. Currently, a range of antimicrobial agents and protocols have been used in clinical management, but these remain largely non-v
... Show More