A microbial desalination cell (MDC) is a new approach to bioelectrochemical systems. It provides a more sustainable way to electrical power production, saltwater desalination, and wastewater treatment at the same time. This study examined three operation modes of the MDC: chemical cathode, air cathode, and biocathode MDC, to give clear sight of this system's performance. The experimental work results for these three modes were recorded as power densities generation, saltwater desalination rates, and COD removal percentages. For the chemical cathode MDC, the power density was 96.8 mW/m2, the desalination rate was 84.08 ppm/hr, and the COD removal percentage was 95.94%. The air cathode MDC results were different
... Show MoreThe study was conducted at the fields of the Department of Horticulture and Landscape Gardening, College of Agriculture, University of Baghdad " Abu Ghraib" during the growing seasons 2013-2014 to Evaluate the Vegetative growth , yield traits and genetic parameter of some tomato mutants. Results showed significantly increased of plant height in M6-2 mutant 245cm in Comparison with M6- 3 130 cm . M6-4 mutant significantly increasing of floral clusters 13 . Mutant M6-3 showed significantly increasing the average of, fruit weight 125.9g and plant yield 7.17 kg.plant-1 as comparison with M6-2 which showed decreasing of average of fruit weight and plant yield 79.40g and 4.38 kg.plant-1 respectively. Also results showed the highest Genetic variat
... Show MoreAn application of neural network technique was introduced in modeling the point efficiency of sieve tray, based on a
data bank of around 33l data points collected from the open literature.Two models proposed,using back-propagation
algorithm, the first model network consists: volumetric liquid flow rate (QL), F foctor for gas (FS), liquid density (pL),
gas density (pg), liquid viscosity (pL), gas viscosity (pg), hole diameter (dH), weir height (hw), pressure (P) and surface
tension between liquid phase and gas phase (o). In the second network, there are six parameters as dimensionless
group: Flowfactor (F), Reynolds number for liquid (ReL), Reynolds number for gas through hole (Reg), ratio of weir
height to hole diqmeter
The image caption is the process of adding an explicit, coherent description to the contents of the image. This is done by using the latest deep learning techniques, which include computer vision and natural language processing, to understand the contents of the image and give it an appropriate caption. Multiple datasets suitable for many applications have been proposed. The biggest challenge for researchers with natural language processing is that the datasets are incompatible with all languages. The researchers worked on translating the most famous English data sets with Google Translate to understand the content of the images in their mother tongue. In this paper, the proposed review aims to enhance the understanding o
... Show MoreIn the literature, several correlations have been proposed for hold-up prediction in rotating disk contactor. However,
these correlations fail to predict hold-up over wide range of conditions. Based on a databank of around 611
measurements collected from the open literature, a correlation for hold up was derived using Artificial Neiral Network
(ANN) modeling. The dispersed phase hold up was found to be a function of six parameters: N, vc , vd , Dr , c d m / m ,
s . Statistical analysis showed that the proposed correlation has an Average Absolute Relative Error (AARE) of 6.52%
and Standard Deviation (SD) 9.21%. A comparison with selected correlations in the literature showed that the
developed ANN correlation noticeably
Several correlations have been proposed for bubble point pressure, however, the correlations could not predict bubble point pressure accurately over the wide range of operating conditions. This study presents Artificial Neural Network (ANN) model for predicting the bubble point pressure especially for oil fields in Iraq. The most affecting parameters were used as the input layer to the network. Those were reservoir temperature, oil gravity, solution gas-oil ratio and gas relative density. The model was developed using 104 real data points collected from Iraqi reservoirs. The data was divided into two groups: the first was used to train the ANN model, and the second was used to test the model to evaluate their accuracy and trend stability
... Show More
Cutting forces are important factors for determining machine serviceability and product quality. Factors such as speed feed, depth of cut and tool noise radius affect on surface roughness and cutting forces in turning operation. The artificial neural network model was used to predict cutting forces with related to inputs including cutting speed (m/min), feed rate (mm/rev), depth of cut (mm) and work piece hardness (Map). The outputs of the ANN model are the machined cutting force parameters, the neural network showed that all (outputs) of all components of the processing force cutting force FT (N), feed force FA (N) and radial force FR (N) perfect accordance with the experimental data. Twenty-five samp
... Show More