Preferred Language
Articles
/
khdkX5MBVTCNdQwCTNLU
Quantitative analysis of sentinel lymph node detection using a novel small field of view hybrid gamma camera (HGC)
...Show More Authors

Introduction The Hybrid Gamma Camera (HGC) is being developed to enhance the localisation of radiopharmaceutical uptake in targeted tissues during surgical procedures such as sentinel lymph node (SLN) biopsy. Purpose To assess the capability of the HGC, a lymph-node-contrast (LNC) phantom was constructed for an evaluative study simulating medical scenarios of varying radioactivity concentration and SLN size. Materials and methods The phantom was constructed using two methyl methacrylate PMMA plates (8 mm thick). The SLNs were simulated by drilling circular wells of diameters ranging between 10 mm and 2.5 mm (16 wells in total) in one plate. These simulated SLNs were placed underneath scattering material with thicknesses ranging between 5 mm and 40 mm. The second plate contains four rectangular wells to simulate background activity uptake surrounding the SLNs. The activity used ranged between 4 MBq and 0.025 MBq for the SLNs. The background activity was 1/10 of the SLNs activity. The collimator to source distance was 120 mm. Results Signal to Noise Ratio (SNR) analysis and spatial resolution measurements of the simulated SLN were used to compare the imaging sets over acquisition times ranging between 60s and 240s. The HGC successfully detected 87.5% to 100% of the SLNs through 20mm of scattering material, and it could detect 75% to 93.75% of the SLNs through 40mm of scattering material. Measurement of Full-Width-at-Half-Maximum (FWHM) for the detected SLNs ranged between 9.5 mm and 12 mm. Conclusion The HGC is capable of detecting low activity uptake in small SLNs indicating its usefulness as an intraoperative imaging system during surgical SLN procedures.

Crossref
View Publication
Publication Date
Sun Jul 30 2023
Journal Name
Iraqi Journal Of Science
Generalization of Gamma and Beta Functions with Certain Properties and Statistical Application
...Show More Authors

     This work is devoted to define new generalized gamma and beta functions involving the recently suggested seven-parameter Mittag-Leffler function, followed by a review of all related special cases. In addition, necessary investigations are affirmed for the new generalized beta function, including, Mellin transform, differential formulas, integral representations, and essential summation relations. Furthermore, crucial statistical application has been realized for the new generalized beta function.  

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sun Mar 31 2024
Journal Name
Iraqi Geological Journal
Permeability Prediction and Facies Distribution for Yamama Reservoir in Faihaa Oil Field: Role of Machine Learning and Cluster Analysis Approach
...Show More Authors

Empirical and statistical methodologies have been established to acquire accurate permeability identification and reservoir characterization, based on the rock type and reservoir performance. The identification of rock facies is usually done by either using core analysis to visually interpret lithofacies or indirectly based on well-log data. The use of well-log data for traditional facies prediction is characterized by uncertainties and can be time-consuming, particularly when working with large datasets. Thus, Machine Learning can be used to predict patterns more efficiently when applied to large data. Taking into account the electrofacies distribution, this work was conducted to predict permeability for the four wells, FH1, FH2, F

... Show More
View Publication
Scopus (6)
Crossref (2)
Scopus Crossref
Publication Date
Wed Jun 24 2015
Journal Name
Chinese Journal Of Biomedical Engineering
Single Channel Fetal ECG Detection Using LMS and RLS Adaptive Filters
...Show More Authors

ECG is an important tool for the primary diagnosis of heart diseases, which shows the electrophysiology of the heart. In our method, a single maternal abdominal ECG signal is taken as an input signal and the maternal P-QRS-T complexes of original signal is averaged and repeated and taken as a reference signal. LMS and RLS adaptive filters algorithms are applied. The results showed that the fetal ECGs have been successfully detected. The accuracy of Daisy database was up to 84% of LMS and 88% of RLS while PhysioNet was up to 98% and 96% for LMS and RLS respectively.

Publication Date
Mon Jan 01 2018
Journal Name
Matec Web Of Conferences
Brain Tumour Detection using Fine-Tuning Mechanism for Magnetic Resonance Imaging
...Show More Authors

In this paper, new brain tumour detection method is discovered whereby the normal slices are disassembled from the abnormal ones. Three main phases are deployed including the extraction of the cerebral tissue, the detection of abnormal block and the mechanism of fine-tuning and finally the detection of abnormal slice according to the detected abnormal blocks. Through experimental tests, progress made by the suggested means is assessed and verified. As a result, in terms of qualitative assessment, it is found that the performance of proposed method is satisfactory and may contribute to the development of reliable MRI brain tumour diagnosis and treatments.

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Thu Apr 01 2021
Journal Name
Telkomnika (telecommunication Computing Electronics And Control)
Automatic human ear detection approach using modified adaptive search window technique
...Show More Authors

View Publication
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Tue Sep 23 2025
Journal Name
Journal Of Plant Protection Research
Smart sprayer for weed control using an object detection algorithm (yolov5)
...Show More Authors

Spraying pesticides is one of the most common procedures that is conducted to control pests. However, excessive use of these chemicals inversely affects the surrounding environments including the soil, plants, animals, and the operator itself. Therefore, researchers have been encouraged to...

View Publication
Scopus Clarivate Crossref
Publication Date
Wed Nov 30 2022
Journal Name
Iraqi Journal Of Science
Breast Cancer Detection using Decision Tree and K-Nearest Neighbour Classifiers
...Show More Authors

      Data mining has the most important role in healthcare for discovering hidden relationships in big datasets, especially in breast cancer diagnostics, which is the most popular cause of death in the world. In this paper two algorithms are applied that are decision tree and K-Nearest Neighbour for diagnosing Breast Cancer Grad in order to reduce its risk on patients. In decision tree with feature selection, the Gini index gives an accuracy of %87.83, while with entropy, the feature selection gives an accuracy of %86.77. In both cases, Age appeared as the  most effective parameter, particularly when Age<49.5. Whereas  Ki67  appeared as a second effective parameter. Furthermore, K- Nearest Neighbor is based on the minimu

... Show More
Scopus (14)
Crossref (8)
Scopus Crossref
Publication Date
Tue Oct 01 2019
Journal Name
2019 International Conference On Electrical Engineering And Computer Science (icecos)
An Evolutionary Algorithm for Community Detection Using an Improved Mutation Operator
...Show More Authors

View Publication
Scopus (5)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Fri Dec 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Multi – Linear in Multiple Nonparametric Regression , Detection and Treatment Using Simulation
...Show More Authors

             It is the regression analysis is the foundation stone of knowledge of statistics , which mostly depends on the ordinary least square method , but as is well known that the way the above mentioned her several conditions to operate accurately and the results can be unreliable , add to that the lack of certain conditions make it impossible to complete the work and analysis method and among those conditions are the multi-co linearity problem , and we are in the process of detected that problem between the independent variables using farrar –glauber test , in addition to the requirement linearity data and the lack of the condition last has been resorting to the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Dec 14 2020
Journal Name
2020 13th International Conference On Developments In Esystems Engineering (dese)
Anomaly Based Intrusion Detection System Using Hierarchical Classification and Clustering Techniques
...Show More Authors

With the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vect

... Show More
View Publication
Scopus (4)
Crossref (5)
Scopus Clarivate Crossref