Colorectal cancer (CRC) is the most common gastrointestinal malignancy and one of the top ten common cancers worldwide with approximately 2 million cases. There are multiple risk factors that could lead to CRC emergence; of which are genetic polymorphisms. Excision repair cross-complementing group 2 (ERCC2) gene encodes for ERCC2 enzyme which plays a crucial role in maintaining genomic integrity by removing DNA adducts. Several studies suggested that there could be a link between genetic polymorphisms of ERCC2 gene and the risk of CRC development. Hence the present study aims to validate the relationship between the following ERCC2 single nucleotide polymorphisms (rs13181, rs149943175, rs530662943, and rs1799790) and CRC susceptibility. A total of 121 participants were enrolled in this case control study; 72 CRC patients and 49 apparently healthy individuals. CRC patients aged 56.34 ±11.89 years and 41 (56.9%) were males while control group were 53.20 ± 17.33 years and 26 (53.1%) of them are males. Genotyping was performed using polymerase chain reaction (PCR) followed by Sanger sequencing then the association between genetic polymorphisms and CRC susceptibility was examined. GA genotype and A allele of rs149943175 were associated with lower risk of CRC development [OR 95% (CI)= 0.3 (0.1-0.88); P=0.02 and 0.4 (0.1-0.9); P=0.03 respectively]. However, GA genotype and A allele carriers of rs530662943 had significantly increased risk compared to GG genotype and G allele respectively [OR 95%(CI)= 5.17 (1.1-24.0); P=0.03 and 4.76 (1.0-21.6); P=0.04 respectively]. Additional stratified analyses showed that carriers of heterozygous genotype of rs149943175 who non-smokers, females or BMI figures less than 25 are less likely to develop CRC compared to wild genotype carriers. Taken together, genetic polymorphisms of ERCC2 modulate the susceptibility of CRC malignancy.
Inherent fluctuations in the availability of energy from renewables, particularly solar, remain a substantial impediment to their widespread deployment worldwide. Employing phase-change materials (PCMs) as media, saving energy for later consumption, offers a promising solution for overcoming the problem. However, the heat conductivities of most PCMs are limited, which severely limits the energy storage potential of these materials. This study suggests employing circular fins with staggered distribution to achieve improved thermal response rates of PCM in a vertical triple-tube heat exchanger involving two opposite flow streams of the heat-transfer fluid (HTF). Since heat diffusion is not the same at various portions of the PCM unit,
... Show MoreThe electrical insulation of the manufacture sulfonated phenol-formaldehyde viscous material (product) has been studied with Polyvinyl-acetate (PVA) and toluene diisocyanate (TDI) blend has been prepared by fixing percentage by weight 3:1 and mixed with different percentages by weight of the product sulfonated phenol formaldehyde viscous mass (SPF). The Fourier transform infrared (FTIR) spectroscopy is done on (SPF) resin powder and prepared film of PVA-TDI-SPF viscous mass. The quality factor (Q), dissipation factor (D), parallel resistance (Rp), series resistance (Rs), parallel capacitance (Cp), series capacitance (Cs) and phase shift (?) are measured. The calculated maximum dielectric constant (??) is 3.49x107 at sample (1) wt.1% SPF vis
... Show MoreThe largest use of x-ray in medical by dentists, employers or persons that needed by patients with specific conditions, lead to higher exposure of x-ray that may cause many diseases. In the present work radiography films have been used in evaluating the efficiency of using unsaturated polyester polymer reinforced with lead oxide (PbO) as shield material for medical x-ray devices, many parameters studied like concentration and thickness that they are increasing the attenuation of x-ray in them. The results show that the attenuation of X-ray increasing with concentration of reinforced material and with thickness, and the optical density decreases with increasing concentration from 0% to 50%, we chose 30% as suitable concentration to increase
... Show MoreIn this paper, some series of new complexes of Mn(II), Co(II), Ni (II) Cu(II) and Hg(II) are prepared from the Schiff bases (L1,L2). (L1) derived from 4-aminoantipyrine and O-phenylene dia mine then (L2) derived from (L1) and 2-benzoyl benzoic acid. Structural features are obtained from their elemental microanalyses, molar conductance, IR, UV–Vis, 1H, 13CNMR spectra and magnetic susceptibility. The magnetic susceptibility and UV–Vis, IR spectral data of the ligand (L1) complexes get square–planar and tetrahedral geometries and the complexes oflig and (L2) get an octahedral geometry. Antimicrobial examinations show good results in the sharing complexes.
The research aims to develop alternatives to transportation at the entrance to the Educational City (University of Baghdad) during the morning and evening peaks, which result from of the traffic congestion at the entrances to the educational city (the University of Baghdad), and affects the emotional, functional, and social performance of the whole city, and leads to hotbeds of confluence and congestion at the entrances in the morning and evening peaks. This movement was measured on the ground for pedestrians and vehicles. Some criteria were adopted to determine the density of road length to the area and density of roads for the number of users and the rate of the area served by roads. The research reviews the experiences of some
... Show MorePure and Fe-doped zinc oxide nanocrystalline films were prepared
via a sol–gel method using -
C for 2 h.
The thin films were prepared and characterized by X-ray diffraction
(XRD), atomic force microscopy (AFM), field emission scanning
electron microscopy (FE-SEM) and UV- visible spectroscopy. The
XRD results showed that ZnO has hexagonal wurtzite structure and
the Fe ions were well incorporated into the ZnO structure. As the Fe
level increased from 2 wt% to 8 wt%, the crystallite size reduced in
comparison with the pure ZnO. The transmittance spectra were then
recorded at wavelengths ranging from 300 nm to 1000 nm. The
optical band gap energy of spin-coated films also decreased as Fe
doping concentra