Preferred Language
Articles
/
kYZKM4YBIXToZYALun7_
A Pattern-Recognizer Artificial Neural Network for the Prediction of New Crescent Visibility in Iraq
...Show More Authors

Various theories have been proposed since in last century to predict the first sighting of a new crescent moon. None of them uses the concept of machine and deep learning to process, interpret and simulate patterns hidden in databases. Many of these theories use interpolation and extrapolation techniques to identify sighting regions through such data. In this study, a pattern recognizer artificial neural network was trained to distinguish between visibility regions. Essential parameters of crescent moon sighting were collected from moon sight datasets and used to build an intelligent system of pattern recognition to predict the crescent sight conditions. The proposed ANN learned the datasets with an accuracy of more than 72% in comparison to the actual observational results. ANN simulation gives a clear insight into three crescent moon visibility regions: invisible (I), probably visible (P), and certainly visible (V). The proposed ANN is suitable for building lunar calendars, so it was used to build a four-year calendar on the horizon of Baghdad. The built calendar was compared with the official Hijri calendar in Iraq.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Mar 29 2024
Journal Name
Iraqi Journal Of Science
Evaluating the Performance and Behavior of CNN, LSTM, and GRU for Classification and Prediction Tasks
...Show More Authors

     Deep learning (DL) plays a significant role in several tasks, especially classification and prediction. Classification tasks can be efficiently achieved via convolutional neural networks (CNN) with a huge dataset, while recurrent neural networks (RNN) can perform prediction tasks due to their ability to remember time series data. In this paper, three models have been proposed to certify the evaluation track for classification and prediction tasks associated with four datasets (two for each task). These models are CNN and RNN, which include two models (Long Short Term Memory (LSTM)) and GRU (Gated Recurrent Unit). Each model is employed to work consequently over the two mentioned tasks to draw a road map of deep learning mod

... Show More
View Publication
Scopus (10)
Crossref (4)
Scopus Crossref
Publication Date
Fri Sep 15 2023
Journal Name
Journal Of Baghdad College Of Dentistry
Effect of feeding pattern on the stage of primary dentition eruption in relation to growth parameters
...Show More Authors

Background: Feeding is a complicated process that involves the coordination of cardiovascular, respiratory, gastrointestinal (GI), and oropharyngeal mechanisms, with support from the musculoskeletal and craniofacial systems. The practice of feeding could be correlated with eruption stage and nutritional status in infants. Aim of the study: This study aimed to assess the relation of feeding patterns to a selected oral variable (stage of the eruption of primary teeth) and growth parameters among clinically healthy infants. Subjects and Methods: A cross-sectional comparative study on a sample of (300) infants aged between 6 and 18 months was performed in Karbala City, Iraq. The feeding pattern was investigated using an information sheet ans

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Wed Dec 18 2019
Journal Name
Baghdad Science Journal
A Modified Approach by Using Prediction to Build a Best Threshold in ARX Model with Practical Application
...Show More Authors

The proposal of nonlinear models is one of the most important methods in time series analysis, which has a wide potential for predicting various phenomena, including physical, engineering and economic, by studying the characteristics of random disturbances in order to arrive at accurate predictions.

In this, the autoregressive model with exogenous variable was built using a threshold as the first method, using two proposed approaches that were used to determine the best cutting point of [the predictability forward (forecasting) and the predictability in the time series (prediction), through the threshold point indicator]. B-J seasonal models are used as a second method based on the principle of the two proposed approaches in dete

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Wed Sep 27 2023
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Assessing the reliability of serum macrophage migration inhibitory factor as a marker for diabetic nephropathy prediction in type 2 diabetes patients and the effect of ACE inhibitors on its level
...Show More Authors

Abstract Diabetic nephropathy (DN) is a prevalent chronic microvascular diabetic complication. As inflammation plays a vital role in the development and progress of DN the macrophages migration inhibitory factor (MIF), a proinflammatory multifunctional cytokine approved to play a critical function in inflammatory responses in various pathologic situations like DN. This study aimed To assess serum levels of MIF in a sample of Iraqi diabetic patients with nephropathy supporting its validity as a marker for predicting nephropathy in T2DM patients. In addition, to evaluate the nephroprotective effect of angiotensin-converting enzyme (ACE) inhibitors in terms of their influence on MIF levels. This is a case-control study involving ninety

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Wed Jul 31 2019
Journal Name
Journal Of Engineering
A Comparative Study of Various Intelligent Optimization Algorithms Based on Path Planning and Neural Controller for Mobile Robot
...Show More Authors

In this paper, a cognitive system based on a nonlinear neural controller and intelligent algorithm that will guide an autonomous mobile robot during continuous path-tracking and navigate over solid obstacles with avoidance was proposed. The goal of the proposed structure is to plan and track the reference path equation for the autonomous mobile robot in the mining environment to avoid the obstacles and reach to the target position by using intelligent optimization algorithms. Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC) Algorithms are used to finding the solutions of the mobile robot navigation problems in the mine by searching the optimal paths and finding the reference path equation of the optimal

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Wed May 14 2025
Journal Name
Reproductive Biology And Endocrinology
The aryl hydrocarbon receptor: a new frontier in male reproductive system
...Show More Authors

Background: The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor historically recognized for its role in the regulation of toxicity mediated by environmental chemicals. Recent research points to AhR's critical participation in male reproductive physiology, particularly in spermatogenesis, hormone signaling, and the maintenance of sperm quality. Both endogenous ligands (e.g., dietary and gut microbiota-derived metabolites) and exogenous pollutants (e.g., dioxins and benzo-α-pyrene) influence AhR-mediated pathways, making it a key link between environmental exposures and male fertility. Results: This review highlights AhR's influence on the male reproductive system, emphasizing the role of endogenous AhR ligands an

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Tue Mar 20 2018
Journal Name
Day 2 Wed, March 21, 2018
Numerical Approach for the Prediction of Formation and Hydraulic Fracture Properties Considering Elliptical Flow Regime in Tight Gas Reservoirs
...Show More Authors
Abstract<p>As tight gas reservoirs (TGRs) become more significant to the future of the gas industry, investigation into the best methods for the evaluation of field performance is critical. While hydraulic fractured well in TRGs are proven to be most viable options for economic recovery of gas, the interpretation of pressure transient or well test data from hydraulic fractured well in TGRs for the accurate estimation of important reservoirs and fracture properties (e.g. fracture length, fracture conductivity, skin and reservoir permeability) is rather very complex and difficult because of the existence of multiple flow profiles/regimes. The flow regimes are complex in TGRs due to the large hydraulic fractures n</p> ... Show More
View Publication
Scopus (14)
Crossref (8)
Scopus Crossref
Publication Date
Sun Jul 01 2001
Journal Name
Bulletin Of The Iraq Natural History Museum (p-issn: 1017-8678 , E-issn: 2311-9799)
HAEMATOZO`A OF THE AVIAN FAMILY PHASIANIDAE IN IRAQ
...Show More Authors

A collection of 118 specimens of Iraqi phasianid birds belong to four species was examined
for haematozoa. Results show that 21.2% of them were infected with one or more of four
species of blood parasites; Haemoproteus danilewskyi, H. santosdiasi, Plasmodium sp. and
microfilaria. Haemoproteus danilewskyi is reported here for the first time in Iraq.

View Publication Preview PDF
Publication Date
Fri May 20 2016
Journal Name
Journal Of Biodiversity And Environmental Sciences Jbes
New record of the Epaulet Skimmer: Orthetrum chrisostigma (Burmeister) (Odonata: Libellulidae) from Iraq
...Show More Authors

Publication Date
Mon Apr 15 2019
Journal Name
Proceedings Of The International Conference On Information And Communication Technology
Re-evaluation of the stable improved LEACH routing protocol for wireless sensor network
...Show More Authors

View Publication
Scopus (16)
Crossref (12)
Scopus Clarivate Crossref