Wellbore instability is one of the major issues observed throughout the drilling operation. Various wellbore instability issues may occur during drilling operations, including tight holes, borehole collapse, stuck pipe, and shale caving. Rock failure criteria are important in geomechanical analysis since they predict shear and tensile failures. A suitable failure criterion must match the rock failure, which a caliper log can detect to estimate the optimal mud weight. Lack of data makes certain wells' caliper logs unavailable. This makes it difficult to validate the performance of each failure criterion. This paper proposes an approach for predicting the breakout zones in the Nasiriyah oil field using an artificial neural network. It also presents the optimal mud weight window for this field, which can be used to optimise the mud weights to minimise the wellbore instability issues. The results showed that an artificial neural network is a powerful tool for determining the breakout zones using the input data. The obtaining root mean square error and the determination coefficient were respectively 0.0082 and 0.959, by which the 1D MEM gave a high match between the predicted wellbore instabilities using the Mogi-failure criterion and the predicted breakout using the ANN model. Most borehole enlargements occur due to formation shear failures because of using low mud weights during drilling. The conclusion clarify the1.35 g/cc is the optimal mud weights for drilling new wells in this field of interest with fewer drilling issues.
Classification of imbalanced data is an important issue. Many algorithms have been developed for classification, such as Back Propagation (BP) neural networks, decision tree, Bayesian networks etc., and have been used repeatedly in many fields. These algorithms speak of the problem of imbalanced data, where there are situations that belong to more classes than others. Imbalanced data result in poor performance and bias to a class without other classes. In this paper, we proposed three techniques based on the Over-Sampling (O.S.) technique for processing imbalanced dataset and redistributing it and converting it into balanced dataset. These techniques are (Improved Synthetic Minority Over-Sampling Technique (Improved SMOTE), Border
... Show MoreAn experimental analysis was included to study and investigate the mass transport behavior of cupric ions reduction as the main reaction in the presence of 0.5M H2SO4 by weight difference technique (WDT). The experiments were carried out by electrochemical cell with a rotating cylinder electrode as cathode. The impacts of different operating conditions on mass transfer coefficient were analyzed such as rotation speeds 100-500 rpm, electrolyte temperatures 30-60 , and cupric ions concentration 250-750 ppm. The order of copper reduction reaction was investigated and it shows a first order reaction behavior. The mass transfer coefficient for the described system was correlated with the aid of dimensionless groups as fo
... Show MoreFree Space Optical (FSO) technology offers highly directional, high bandwidth communication channels. This technology can provide fiber-like data rate over short distances. In order to improve security associated with data transmission in FSO networks, a secure communication method based on chaotic technique is presented. In this paper, we have turned our focus on a specific class of piece wise linear one-dimensional chaotic maps. Simulation results indicate that this approach has the advantage of possessing excellent correlation property. In this paper we examine the security vulnerabilities of single FSO links and propose a solution to this problem by implementing the chaotic signal generator “reconfigurable tent map”. As synchronizat
... Show MoreAn optical video communication system is designed and constructed using pulse frequency modulation (PFM) technique. In this work PFM pulses are generated at the transmitter using voltage control oscillator (VCO) of width 50 ns for each pulse. Double frequency, equal width and narrow pulses are produced in the receiver be for demodulation. The use of the frequency doubling technique in such a system results in a narrow transmission bandwidth (25 ns) and high receiver sensitivity.
The current research aims to identify the Impact of strategy of modeling in the of deductive thinking and the attitvde towards mathematics among students in the high school stage
through check the following hypotheses:
1.There is no difference statistically significant at the level (0.05) between the scores mean of the experimental group students who have studied according to the modeling strategy and scores of control group students who have studied according to ordinary method in deductive thinking.
2.
... Show MoreKnowing the distribution of the mechanical rock properties and the far field stresses for the field of interest is an important task for many applications concerning reservoir geomechanics, including wellbore instability analysis, hydraulic fracturing, sand production, reservoir compaction, and subsidence. A major challenge with determining the rock's mechanical properties is that they cannot be directly measured at the borehole. Furthermore, the recovered carbonate core samples for performing measurements are limited and they provide discrete data for specific depths.
The purpose of this study is to build 2D and 3D geomechanical models of the Khasib reservoir in the East Baghdad oil field/ Central area. TECHLOG.2015.3 softwa
... Show MoreIn this work, a new development of predictive voltage-tracking control algorithm for Proton Exchange Membrane Fuel Cell (PEMFCs) model, using a neural network technique based on-line auto-tuning intelligent algorithm was proposed. The aim of proposed robust feedback nonlinear neural predictive voltage controller is to find precisely and quickly the optimal hydrogen partial pressure action to control the stack terminal voltage of the (PEMFC) model for N-step ahead prediction. The Chaotic Particle Swarm Optimization (CPSO) implemented as a stable and robust on-line auto-tune algorithm to find the optimal weights for the proposed predictive neural network controller to improve system performance in terms of fast-tracking de
... Show More